Abstract |
Positive energy residential buildings are houses that generate more energy from renewable sources than they consume while maintaining appropriate thermal comfort levels. However, their design, construction and operation present several critical challenges. In particular, the considerable load reductions are not always compatible with the increased level of comfort expected in modern houses. Tropical climates, meanwhile, should be more amenable to the implementation of positive energy houses for two reasons. Firstly, negligible heating is generally required as compared to colder climates, where the heating energy requirements are considerable. Then, renewable energy resources are usually abundant in tropical climates. This paper investigates the feasibility of positive energy residential buildings in the tropical island of Mauritius. A baseline model representing a typical Mauritian house is designed using DesignBuilder software. The energy efficiency of the model is then optimised by investigating a whole range of passive building design strategies, many of them adapted from vernacular architecture. Results reveal that the application of passive strategies such as shading, insulation and natural ventilation have precluded the need for artificial cooling and ventilation in the positive energy (PE) house. The resulting electricity consumption of the house decreases from 24.14 to 14.30 kWh/m2/year. A 1.2 kW photovoltaic system provides the most cost-effective solution to exceed the annual electricity requirements of the house. |