
Program: SErrors - Calculate sampling errors using the jack knife method

1. Schematic

2. Function

Calculate sampling errors for the principal estimates presented in the standard CWIQ tables at the national level and for rural, urban and regional subgroups. The list of estimates for which sampling errors are calculated appears in Appendix A.

3. Input

A. CWIQ questionnaire database.

The CWIQ questionnaire database consists of three tables: the household table; the individual table; and the child table. For each household surveyed there is one record in the household table (HHData), one record for each household member in the individual table (INData) and one record for each child under 5 in the child table (CHData).

4. Input/Output

A. <u>Cluster work table</u> (SErrorsW)

The cluster work table contains intermediate results needed to calculate the sampling errors. There is an entry in the cluster work table for each cluster and each estimate for which sampling errors are calculated. A detailed description of the work table appears in Appendix B.

5. Output

A. Exception list and summary (EditList)

This table contains a summary list of the number of questionnaires processed and a list of any exceptional conditions encountered in the data.

B. Sampling errors for selected estimates (SErrors)

This table contains the results of the sampling error calculations. These include the estimate name, the domain (subgroup) name, the estimate itself, the variance, the standard error, the relative standard error and the limits of a 95% confidence interval for the estimate and similar statistics calculated as if the sample was drawn as a simple random sample (SRS). There is a table entry for each national and subgroup estimate. A complete description of the table appears in Appendix B.

6. Processing

This program uses the jack knife method to calculate sampling (standard) errors for ratio estimates of the form r = y / x. For a sample with n clusters, estimates are constructed for n sub-samples, each consisting of n-1 clusters. The n sub-sample estimates are used to calculate the standard error according to the formula below.

The method used to construct the n sub-samples of n-1 clusters is as follows:

For each estimate and each cluster (note that all estimates are weighted):

Accumulate cluster totals for the numerator and denominator of each estimate (y_c and x_c). Write the cluster totals for each estimate to the cluster work table together with the urban/rural and regional classifications for the cluster.

Count the number of clusters (n).

Accumulate domain (national, region, urban/rural) totals for the numerator and denominator of each estimate (y_t and x_t). Calculate domain estimates (r_t) using the accumulated domain totals (y_t , x_t).

Read the cluster work table and for each cluster, calculate totals for an n-1 cluster sample by subtracting the cluster totals of the numerator and denominator from the domain totals (y_i and x_i). Calculate the sample value of the ratio (r_i) using the sample numerator and denominator. Accumulate the sum of the sample estimates.

 $y_i = y_t - y_c$; $x_i = x_t - x_c$; $r_i = y_i / x_i$. (i = 1 to n is the sample number)

Calculate and accumulate the sample contribution to the variance of the estimate:

$$var_{i} = (n * r_{t} - (n-1) * r_{i})^{2}$$

The variance of the estimate is calculated using the following formula:

Variance =
$$\frac{\sum_{i=1}^{n} \operatorname{var}_{i} - n\overline{r}^{2}}{n(n-1)}$$
 where $\overline{r} = \frac{\sum_{i=1}^{n} r_{i}}{n}$

The standard error of the estimate is the square root of the variance.

The relative standard error is the standard error expressed as a percentage of the estimate.

The 95% confidence interval is the estimate + or - 2 times the standard error.

The program also calculates sampling errors as if the sample had been drawn as a simple random sample (SRS). The variance of a ratio r = y / x from a simple random sample is computed using the following formula:

$$\operatorname{var}(r) = \frac{1 - f}{n\overline{x}^2} \sum_{i=1}^{n} \frac{(y_i - rx_i)^2}{n - 1}$$

where n is the unweighted number of observations

The sum of the squares above is calculated as:

$$\sum_{i=1}^{n} y_{i}^{2} - 2r \sum_{i=1}^{n} x_{i} y_{i} + r^{2} \sum_{i=1}^{n} x_{i}^{2}$$

The program accumulates the individual values of x, y, x^2 , y^2 and xy as the database is being processed. When all the data have been processed, the SRS variance is calculated according to the formula above. SRS standard error and relative standard error are derived as described above.

Appendix B - ancillary table formats

SErrors - Sampling errors

<u>Name</u> StatNo SGVariable	<u>Description</u> Estimate sequence number Subgroup variable number	<u>Type</u> Integer 2 Byte 1
	0 National	
	1 Urban/Rural	
	2 Regional	
SGNumber SGName	Subgroup entry number Subgroup entry name	Byte 1 Text 16
EstimateName	Estimate name	Text 12
Estimate	Value of the estimate	Double 8
EstimateN	Number of estimates (n-1 sub-samples)	Long 4
EstimateVar	Variance of the estimate	Double 8
EstimateSE	Standard error of the estimate	Double 8
RelSe	Relative standard error of the estimate	Double 8
CIMin	Minimum for 95% confidence interval	Double 8
CIMax	Maximum for 95% confidence interval	Double 8
NObs	Weighted number of observations	Double 8
Nunw	Unweighted number of observations	Long 4
Runw	Unweighted estimate value	Single 4
srsVar	Variance if simple random sample	Double 8
srsSE	Standard error if simple random sample	Single 4
srsRelSE	Relative standard error if simple random sample	Single 4

SErrorsW - Cluster work table

Name Al	Description	Туре
A1	Cluster number	Text 3
SeqNo	Sequence number	Integer 2
EstimateName	Estimate name	Text 12
Y	Numerator total	Double 8
Х	Denominator total	Double 8
UrbRur	Urban rural code	Text 1
Region	Region code	Text 2

Structure and logic of module: mCoreInd - calculate core indicators and sampling errors

Data organization:

```
Custom data types:
Type TotStats
     ype folsearsId As Integer' Id for active entry = i or 0 if inactiver As Double' Value of the estimatey As Double' Numeratorx As Double' DenominatorRSum As Double' Sum of individual sample estimatesVarSum As Double' Sum of individual sample components of variancen As Long' Number of observations (clusters)
 ' unweighted statistics for calculating SRS variance
     unweighted statistics for calculating SRS variance
Nobs As Long ' Number of observations (HH/Ind/Ch)
Nunw As Long ' Number of observations (HH/Ind/Ch)
Xunw As Double ' Sum of x(i)
Yunw As Double ' Sum of y(i)
X2unw As Double ' Sum of x(i) squared
XYunw As Double ' Sum of x(i) * y(i)
Y2unw As Double ' Sum of x(i) * y(i)
Y2unw As Double ' Sum of y(i) squared
Runw As Single ' Unweighted r (estimate)
srsVar As Double ' simple random sample variance
srsSE As Single ' simple random sample standard error
      srsRelSE As Single ' simple random sample relative standard error
End Type
Type ClStats
     y As Double ' Numerator

x As Double ' Denominator

r As Double ' Value of estimate

Nobs As Long ' Number of observations (HH/Ind/Ch)

Nunw As Long ' Number of observations (HH/Ind/Ch)

Xunw As Double ' Sum of x(i)

Yunw As Double ' Sum of y(i)

X2unw As Double ' Sum of x(i) squared

XYunw As Double ' Sum of x(i) squared

Yunw As Double ' Sum of x(i) * y(i)

Y2unw As Double ' Sum of y(i) squared

Yunw As Double ' Sum of y(i) squared
End Type
```

Data definitions: Accumulators for basic statisitics by indicator (Type is TotStats) ΤS Totals for level of aggregation Rural Totals for rural clusters Totals for poor households (Quintile = 1) RuralPoor Totals for urban clusters Urban UrbanPoor Totals for poor households (Quintile = 1) Accumulators for basic statistics by cluster (Type is clStats) CS Cluster totals Cluster totals for poor households (Quintile = 1) CSpoor Cluster level classification variables: Dim Year As String ' Year of survey Dim Level As String ' Level of aggregation Dim GPZone As String ' Geo-political Zone Dim State As String ' State code Dim SenZone As String ' State Senatorial Zone Dim FedConst As String ' State Federal constituency Dim LGA As String ' Local government area ' Cluster number Dim A1 As String Cluster identification variables: Dim ClusterId As String Dim PrevClusterId As String Dim clUrbRur As String Procedure definitions: dbInit initStat initialize accumulators for a single indicator initStats initialize accumulators for all indicators initCluster initialize cluster accumulators for all indicators endCluster add cluster totals to indicators, write cluster data to work table