National Survey

Zimbabwe Non-Communicable Disease Risk

Factors - (ZiNCoDs)

Preliminary Report

2005

Using The WHO STEPwise Approach to Surveillance of
Non-Communicable Diseases (STEPS)
COLLABORATION OF

Ministry of Health \& Child Welfare
University of Zimbabwe
World Health Organization
United Nations Children's Fund
TABLE OF CONTENTS
List of abbreviations 8
ACKNOWLEDGEMENTS 9
AUTHORS 10
Survey Team 11
EXECUTIVE SUMMARY 12
1.0: INTRODUCTION AND LITERATURE REVIEW 14
1.1: Global perspective 14
1.2 Developing countries 14
1.3 Sub-Saharan Africa 14
1.4 Zimbabwe 14
1.4.1: Geographic location 14
1.4.2: Health services delivery 17
1.4.3: Disease Burden 17
1.4.4: Preliminary survey 18
1.5: SIGNIFICANCE AND RATIONALE OF SURVEY 18
2.0: OBJECTIVES OF THE STUDY 20
2.1: GENERAL OBJECTIVE 20
2.2: SPECIFIC OBJECTIVES 20
3.0: METHODOLOGY 21
3.1: Design 21
3.2: WHO STEPwise Approach (STEPS) 21
3.3: Adaptation of survey methods and tools. 22
3.4: Conduct of the survey 22
3.4.1: \quad National Team 22
3.4.2: Field Team 22
3.4.3: Adaptation of survey tools and training manuals 22
3.4.4: \quad Training of Interviewers 22
3.4.5: Pilot test of field procedures 23
3.4.6: Field Activities 23
3.4.7: Survey flow 24
3.4.8: Blood Sample Collection 25
3.4.8.1: Materials- 25
3.4.8.2: Glucose: (dextrose monohydrate)- 25
3.4.8.3: Venoject needles- 25
3.4.8.4: Venesection/venepuncture- 25
3.4.8.5: Quality Control of blood Sample Collection- 25
3.4.8.6: Transportation of samples- 26
3.4.8.7: Laboratory Procedures at the Central, Sample Receipt, Recording and Storage- 26
3.4.8.8: Registration of Samples- 26
3.4.8.9: Sample Processing and Analysis- 26
3.5.0: \quad Nutritional Survey (Food Frequency Questionnaire) And Fortification Rapid
Assessment Tool 26
3.6.0: Measurements 27
3.6.1: Step 1: Questionnaire-based assessment: 27
3.6.2: \quad Step 2: Physical measurements 27
3.6.2.1: Blood pressure 27
3.6.2.2: Waist Circumference 27
3.6.2.3: Hip measurement. 27
3.6.2.4: Height 27
3.6.2.5: Weight 27
3.6.3: \quad Step 3: Biochemical assessment 27
3.6.3.1: Glucose Determination 28
3.6.3.2: \quad Serum Lipids. 28
3.6.3.2.1: Serum cholesterol Kit Ref 467825, Lot T501276 28
3.6.3.2.2: Triglyceride Kit: Ref 445850, Lot T502091. 28
3.6.3.2.3: HDL-cholesterol Kit, Ref 467820, Lot M504237. 28
3.6.3.3: LDL-cholesterol 28
3.6.3.4: VLDL-Cholestero 28
3.7.0: DEFINITIONS 29
3.7.1: Overweight and Obesity 29
3.7.2: Central Obesity 29
3.7.3: Hypertension 29
3.7.4: \quad Diabetes and Impaired Glucose Tolerance 29
3.7.5: Lipid Profiles 30
3.8: SAMPLING 31
3.8.1: Sample Size Determination 31
3.9: SAMPLING STRATEGY 31
3.9.1: \quad Sampling of households 32
3.9.2: Sampling within households 32
3.9.3: Informed Consent 33
4.0: DATA MANAGEMENT 34
4.1: Training of data entry clerks. 34
4.2: Data Entry for NCD, FRAT and FFQ questionnaires 34
4.3: Data Cleaning 34
4.4: Data Merging 34
4.5: Data Cleaning After Merging 35
4.5.1: Objectives of cleaning: 35
4.6: Data Analysis 35
5.0 RESULTS 36
5.1: Introduction 36
5.2: - Response rate by province and rural/urban community 36
5.3: Demographic profile of respondents 38
5.3.1: \quad Age Distribution 38
5.3.2: Marital status 38
5.3.3: Educational status 38
5.3.4: Employment status 38
5.3.5: Discussion of demographic profile 38
5.4: Alcohol consumption Pattern 40
5.4.1: Current alcohol consumption 40
Overall 40
5.4.3: History of alcohol consumption 43
5.5: Tobacco consumption 45
5.5.2: History of Tobacco consumption 46
5.6: Discussion on alcohol consumption and tobacco use 47
5.7.0: Physical Inactivity 49
5.7.1: Physical inactivity at work 49
5.7.2:- Physical inactivity at work (no vigorous activity) 51
5.7.3:- Sedentary traveling (transportation) 53
5.7.4:- Sedentary leisure time 53
5.7.5: Discussion on physical inactivity 55
5.8.0. History of Hypertension 56
5.8.1: Discussion of hypertension 56
5.8.2: History of Diabetes mellitus 59
5.9.0: Physical measurements (STEP 2 OF STEPS) 61
5.9.1: Body Mass Index (BMI) 61
5.9.2: Overall distribution of overweight and obesity 62
5.9.3: Overweight and obesity among males 63
5.9.4: Overweight and obesity among females 66
5.10.0: Waist Hip Ratio (WHR 67
5.11.0: Blood pressure 69
5.11.1: Systolic blood pressure. 69
5.11.2: Diastolic blood pressure 69
5.11.3: Prevalence of hypertension 71
5.11.3.1: For females 71
5.11.3.2:- .For males 71
5.11.4: Discussion on prevalence of hypertension. 73
5.12.0: Biochemical measurements (STEP 3 of STEPS) 75
5.12.1: Mean fasting blood sugar 75
5.12.2: Prevalence of diabetes mellitus (both males and females) 76
5.12.3: Prevalence of Impaired Glucose Tolerance (IGT). 77
5.12.4: Lipid profiles for both males and females 81
5.12.5: Prevalence of hypercholesterolemia 82
5.12.6: Prevalence of abnormal LDL-Cholesterol and Triglycerides levels in both sexes 83
6.0: DISCUSSION 87
6.1: Demographic profile 87
6.2: Lifestyle Factors 87
6.3: Anthropometric measurements 87
6.5: Hypertension. 87
6.6: Diabetes mellitus 88
6.7: Lipids 88
7.0: LIMITATIONS OF THE SURVEY 89
8.0: CONCLUSIONS 89
9.0: RECOMMENDATIONS 89
10.0: REFERENCES 90
APPENDIX: Zimbabwe Non-Communicable Disease Survey (ZiNCoDS) Questionnaire 92
LIST OF TABLES
Table 3.1: Body mass index was calculated as follows: weight in kg/height in square meters. 29
Table 3.2: Definition of hypertension 29
Table 3.3: Diabetes was defined as summarized in the table below 30
Table 3.4: Lipids profiles were defined as summarized in the table below 30
Table 3.5: \quad Sample size estimates for different prevalences of diabetes mellitus and hypertension 31
Table 3.6: Sampling strategy and study sites. 32
Table 5.1: - Distribution of respondents by province, rural/urban community and WHO STEPS.
Table 5.2: Distribution of respondents by age group and Province39
Table 5.3a: Prevalence of current alcohol consumption by province, age group and gender 40
Table 5.3b:- Proportion of respondents who ever consumed alcohol by province, age group andby gender43
Table 5.3c: Proportion of study participants ever consumed alcohol within past 12 months by province,44 44
age group and by gender
45
Table 5.4a: Prevalence of tobacco use/consumption by province, age group and gender
Table 5.4b: Proportion of respondents who are currently using tobacco products only (cigarettes,
Table 5.4b: Proportion of respondents who are currently using tobacco products only (cigarettes, cigars and pipes) by age and sex 46
Table 5.4c: - Proportion of respondents who reported use of tobacco products by province, age group 47
and by gender. 47
Table 5.5a): Percentage of respondents reporting physical inactivity during normal working hours by province 50
and age group(work involving mostly sitting or standing with walking for no more than $\mathbf{1 0}$ minutes at a time) 50
Table 5.5b: Percentage of respondents reporting no vigorous physical activity at work by province 51
and age group. 51
Table 5.5c: Percentage of respondents reporting no vigorous physical activity at work (work involving either sitting or standing with walking no more than 10 minutes at a time, no vigorous activity and less than 3 days of physical activity per week) by province and age group. 52
Table 5.5d: - Percentage of respondents reporting sedentary (walking or pedal cycling for lessthan 10 minutes)53
Traveling by province, sex and age group 53
Table 5.5e: Percentage of respondents reporting sedentary leisure time by province and age group. 54
Table 5.6:- Reported Prevalence of hypertension by province, age group and gender 56
Table 5.7: Reported prevalence of diabetes by province, age group and gender 59
Table 5 8a: Mean BMI by province, age group and gender 61
Table 5.8b: Overall Distribution of respondents on Overweight and obesity stratified by sex and age group 62
Table 5.8.c: Distribution of male respondents on Overweight and obesity stratified by province and age group. 64
Table 5.8d: Distribution of female respondents on Overweight and obesity stratified by province and age group. 65
Table 5.9: Central Obesity (WHR) by province, by age group and gender 67
Table 5.10a: Mean systolic blood pressure by sex, age group and province 68
Table 5.10b: Mean diastolic blood pressure by sex, age group and province 69
Table 5.10c: Prevalence of hypertension among females by age group and Province 70
Table 5.10d: Prevalence of hypertension among males by age group and Province. 72
Table 5.11a: Mean fasting blood sugar by sex, age group and province 75
Table 5.11b:- Prevalence of diabetes mellitus among males by age group and province 76
Table 5.11c: Prevalence of diabetes mellitus among Females by age group and province 77
Table 5.11d: Prevalence of impaired glucose tolerance by age, sex and province 78
Table 5.11e: - Mean Total cholesterol, HDL, LDL and Triglyceride among males by age group and Province. 79

Table 5.11f: Mean Total cholesterol, HDL, LDL and Triglyceride among females by age group and Province.
.80
Table 5.11g: Prevalence of abnormal Cholesterol and HDL-Cholesterol among males by age group and province.
Table 5.11h: Prevalence of abnormal cholesterol and HDL Cholesterol among females by age group and province.
.83
Table 5.11i: Prevalence of abnormal H-LDL-C and H-Triglycerides levels among males by age group and Province. .. 85
Table 5.11j:- Prevalence of abnormal lipids levels among females by age group and Province.... 86
LIST OF FIGURES
Figure1: Map of Africa showing the location of Zimbabwe and the bordering countries 15
Figure 2: Map of Zimbabwe showing the 10 political administrative provinces 16
Figure 5.1: - Response rate based on STEP 1 versus the intended sample size. 36
Figure 5.2:- Prevalence of alcohol consumption by age group and province. 41
Figure 5.3: - Prevalence of smoking by province and age group. 45
Figure 5.4: Reported prevalence of hypertension by province and age group 57
Figure 5.5:- Reported prevalence of diabetes mellitus. 60

List of abbreviations

MOHCW	Ministry of Health and Child Welfare
UNICEF	United Na
WHO	World Health Organization
MPH	Master in Public Health
PhD	Doctor of Philosophy
HIV	Human-Immuno Deficiency Virus
AIDS	Acquired -Immuno-deficiency Syndrome
NCDs	Non-Communicable Diseases
CVDs	Cardiovascular Diseases
BMI	Body Mass Index
FRAT	Fortification Rapid Assessment Tool
FFQ	Food Frequency Questionnaire
HDL-C	High Density Lipoprotein-Cholesterol
LDL-C	Low Density Lipoprotein-Cholesterol
VLDL-C	Very Low Density Lipoprotein-Cholesterol
QA/QC	Quality Assuarance/ Quality Control
PPS	Probability Proportion to Size
SI	Systematic Interval
GTT	Glucose Tolerance Test

ACKNOWLEDGEMENTS

The Ministry of Health and Child Welfare, the World Health Organization, United Nations Children's Fund, provided the funding for this survey. Consultants for this exercise were from the University of Zimbabwe, Ministry of Health and Child Welfare and United Nations Children's Fund.

The Ministry of Health and Child Welfare released personnel to serve as supervisors, team leaders, nutritionists, interviewers, laboratory scientists and drivers.

We would like to thank the Ministry of Health Staff at the institutions where the survey was conducted for facilitating the identification of respondents and making available physical facilities for the survey and upkeep of staff.

We would like to thank the provincial, district and municipal administrative personnel including counselors, chiefs, headmen and all those who made it possible to penetrate into their communities.

Last but by no means last we are most grateful to the respondents who kindly donated their time to respond to questionnaires and undergo the procedures necessary to conduct the survey.

AUTHORS
Professor James G Hakim-MB, MMed, MScClinEpi, FRCP (Lond \& Edin)-Clinician
Department of Medicine \& Clinical Epidemiology Resource \& Training Centre
College of Health Sciences
University of Zimbabwe
P O Box A178, Avondale, Harare
Phone: 263-4-791631, Fax: 263-4-791995
E-mail: jhakim@mweb.co.zw
Mrs. Nokuthula Mujuru- BSc, MPH-National Survey Coordinator
Coordinator Non-Communicable Disease
Non-Communicable Disease Control Unit
Department of Epidemiology
Ministry of Health and Child Welfare
PO Box CY 1122, Causeway, Harare
Tel: 263-4-798537 Fax: 263-4-793634
Email: nokumujuru@yahoo.co.uk
Professor Simbarashe Rusakaniko-BSc, Dip Med Stats, Msc Med Stats, PhDConsultant Biostatistician
Department of Community Medicine \& Clinical Epidemiology Resource \& Training Centre
College of Health Sciences
University of Zimbabwe
P O Box A178, Avondale, Harare
Phone: 263-4-791631, Fax: 263-4-791995
E-mail: srusakaniko@medsch.uz.ac.zw
Professor ZAR Gomo, BSc, MSc, PhD-Laboratory Consultant
Department of Chemical Pathology
College of Health Sciences
University of Zimbabwe
P O Box A178, Avondale, Harare
Phone: 263-4-791631, Fax: 263-4-791995
E-mail: zargomo@yahoo.com or zargomo52@medsch.uz.ac.zw

Survey Team

EXECUTIVE SUMMARY

Introduction and Background

Zimbabwe like most countries in sub-Saharan Africa is gripped by the HIV/AIDS epidemic in particular but generally has a heavy burden of infectious diseases, perinatal and nutritional disorders. It is less well recognized that non-communicable diseases such as hypertension, diabetes, cancers, injuries and their risk factors are important contributors to mortality and morbidity in the country. The WHO has made a commitment to place NCDs firmly on the health agenda of developing countries through various pronouncements such as the statement of the WHO Director General in May 2000. The Zimbabwe national non-communicable disease survey was carried out in 3 of the 10 provinces of Zimbabwe. The survey was conducted in May and June 2005 with a team comprising representatives from the Ministry of Health and Child Welfare and the University of Zimbabwe. The need for the collection of high quality targeted data for planning has been recognized for both planning and surveillance purposes.

Design

A multistage sampling strategy with 3 stages consisting of province, district and health centre was employed. The World Health Organization STEPwise Approach (STEPS) was used as the design basis for the survey. The 3 randomly selected provinces for the survey were Mashonaland Central, Midlands and Matebeleland South. In each Province four districts were chosen and four health centres were surveyed per district. The survey comprised of individuals aged 25 years and over.

Methodology

Three survey teams were formed consisting of individuals from the Provincial Medical Directorates, Ministry of Health and Child Welfare and the University of Zimbabwe College of Health sciences. The three Steps of the WHO STEPwise approach were sequentially implemented after adaptation of the questionnaire and training of the team. In addition to the core and expanded modules, some items of the optional module were selected for each of the 3 steps. Biochemical analysis was performed centrally at the University of Zimbabwe, department of chemical pathology. Data entry and analysis was performed at Clinical Epidemiology Resource and Training Centre of the University of Zimbabwe.

Results

The survey was carried out on 3,081 respondents consisting of 1,189 from Midlands, 944 from Mashonaland Central and 948 from Matebeleland South. The majority of the respondents were female (75\%). The level of education was high with 85.7% of respondents having attained at least primary education. Unemployment was generally high ranging from 18.5% to 54% in various provinces depending on the urban rural mix of the province. Current alcohol consumption was 58% in males and 13.5% in females considering all provinces. Similarly the use of any tobacco product was commonest in males with 33.4% admitting to the habit while only 5% of the older women admitted to the habit. Most of the tobacco products used were smoked substances such as cigarettes, cigars and tobacco-in-pipe. The items of the questionnaire which sought to determine the level of physical inactivity in this community was felt to be insensitive to the lifestyle of the population surveyed. Indeed the analysis showed that there was a high level of physical inactivity at work,
transport and leisure which was clearly not to be expected in a predominantly rural and low income population. Overweight and obesity were more prevalent in females with obesity grade 2 being observed in 6 times as many females as males. Severe obesity was noted in 1.2% of females and none in males. Central obesity defined by standard male and female waist to hip ratio criteria was found in 9.5% males and 23.4% females. A history of hypertension and survey detected hypertension increased with age. In the 25-34 year old age group a history of hypertension was given in 7.9% of respondents which rose to 30.9% in the 65 years and over age group. Hypertension was diagnosed using various cutoffs, but when using the cutoff of systolic blood pressure of 140 mmHg or higher and or a diastolic blood pressure of 90 mmHg or higher we noted hypertension 23.2% of males and 29% of females. Of all respondents 2.9% males and 2.3% females were known to have diabetes mellitus. By oral glucose tolerance test (OGTT) a further 1.3\% of male and female respondents were diagnosed to be diabetic. Hypercholestrolaemia using a high cutoff level of $>6.5 \mathrm{mmol} / \mathrm{l}$ was noted in 3.2% males and 4.7% females. Moderate elevations of triglycerides were noted in 5.2% males and 4.2% females. Protective levels of HDL-cholestorol described as serum cholesterol $>0.9 \mathrm{mmol} / \mathrm{l}$ was found in 13.7% males and 11.5% females.

Conclusions

There is a high prevalence of modifiable risk factors of non-communicable diseases in Zimbabwe. Alcohol consumption and tobacco consumption is high especially among males. Other lifestyle factors such as overweight and central obesity were noted to be high especially in females. The prevalence of both diagnosed and undiagnosed hypertension and diabetes mellitus was found to be high. In this survey the prevalence of abnormal lipids was noted to be significant.

Recommendations

Given the emerging database of a significant prevalence of non-communicable diseases risk factors in Zimbabwe a national policy framework needs to be developed to address preventive, control and palliative needs of non-communicable diseases in the country. Tools are now available to collect important risk factors of noncommunicable diseases such as was used in this survey and strategies need to be put in place to conduct surveillance of these risk factors in a standardized manner.

1.0: INTRODUCTION AND LITERATURE REVIEW

1.1: Global perspective

Non-Communicable diseases (NCDs) and Mental Health are the leading causes of death worldwide, causing 60% of the global deaths and 46% of the global burden of disease (Nigel U, 2001a, WHO 2001, Murray CJL, et al., 1996). NCDs include cardiovascular disease (CVD), such as stroke, and heart attacks, diabetes, chronic lung disease, cancer, diseases of bones and joints and mental illness (Nigel U, 2001a). The biggest single killer is coronary heart disease, followed by other CVDs, cancer and chronic lung disease. Diabetes is a major contributor to deaths from CVDs, but also causes its own unique complications. Common risk factors of these NCDs include smoking, physical inactivity, obesity and diets high in saturated fat and sodium and low in fruit and vegetables intake (Nigel U, 2001a).

The emergence of NCDs as the predominant health problem in wealthy countries accompanied economic development and hence they have been referred to as diseases of the affluent (Nigel U, 2001). This is a misleading notion, which suggests that there is no problem in developing countries, which are resource constrained. The second school of thought classifies NCDs as diseases of urbanization. Studies have indicated that urbanization was directly associated with increase in NCDs Nigel U, 2001a, WHO 2000, Nigel U 2001b, Fourie J, et al, 1995).

1.2 Developing countries

Many developing countries are affected by a double burden of disease; the combination of long established infectious diseases, with a rapidly growing new epidemic of chronic NCDs (WHO 2000). Until recently, risk factors such as raised blood pressure, cholesterol, tobacco use, excess alcohol consumption, obesity, and the diseases linked to them were associated with developed countries. In the World Health Report of 2002 it was shown that even in the poorest regions of the world, these common risk factors are now causing a rising burden of serious disease and untimely deaths (WHO 2003). In Tanzania studies have indicated that in the adult population the probability of death from non-communicable diseases is higher than in developed countries Nigel U, 2001a, Setel P, et al, 2000)

1.3 Sub-Saharan Africa

The burden of non-communicable diseases in the Sub-Saharan Africa countries is already substantial. They bore more than 40% of the total global burden of diseases in 1990 and patients with these conditions make significant demands on health care resources Nigel U, 2001b, Murray CJL 1996). Data from some African countries suggests that predominantly in urban settings, the prevalence of diabetes and hypertension has increased markedly over the past ten years Nigel U, 2001b). In South African townships about 8% of the populations have diabetes and between 20$33 \%$ have hypertension using the cut-of point $>160 / 95 \mathrm{mmHg}$ (Fourie J, at al, 1995).

1.4 Zimbabwe

1.4.1: Geographic location

Zimbabwe lies north of the Capricorn between the Limpopo and the Zambezi rivers. It is a landlocked country, which is in the southern part of the African continent sharing

Formatted

borders with Mozambique in the east, South Africa in the south, Botswana in the west and Zambia in the north and northwest (Figure 1).

Figure1: Map of Africa showing the location of Zimbabwe and the bordering countries.

Figure 2: Map of Zimbabwe showing the 10 political administrative provinces
Zimbabwe is divided into ten administrative provinces, two being urban and eight predominantly rural. Health administration in the two urban provinces falls under city medical directors while in the predominantly rural provinces this falls under provincial medical directors.

1.4.2: Health services delivery

Zimbabwe has a comprehensive health delivery system consisting of government and for profit and not-for-profit private institutions. In addition there is a strong traditional health system which a variety of approaches. The Ministry of Health and Child Welfare operates through a referral system with rural health clinics at the primary level progressing through district/rural/mission hospitals to provincial hospitals and finally referral hospitals at the top. Harare and Bulawayo have municipal health structures that work in conjunction with the MOH and CW structures. There is a total of 1106 health facilities in the country; governmental institutions (371), rural council (391), mission hospitals (88), municipal institutions (107), armed forces facilities (20) and private health facilities (135).

1.4.3: Disease Burden

The burden of disease in Zimbabwe over the past twenty years has been dominated by the raging epidemic of HIV/AIDS. Meanwhile HIV/AIDS is the leading health concern in the country other infectious diseases, perinatal and nutritional disorders are of major importance. The increasing burden of non-communicable disease in Zimbabwe like the pattern in most developing countries adds to the continuing burden of infectious diseases, perinatal and nutritional disorders. This is a major setback for health systems that are already overburdened and under-funded (Murray and Lopez, 1997b). As in most developing countries, a comprehensive description of the magnitude of the burden of CVDs in Zimbabwe is complicated by a lack of accurate and reliable data.

The available data suggest an increasing prevalence of CVD in Zimbabwe. In a survey of admissions to the medical wards at United Bulawayo Hospitals 5 of the top 10 diseases were non-communicable diseases with three of these being CVDs (Mudiayi et al, 1997). In a review of available surveillance data for Harare it was shown that persons aged 45-64 experience a relatively high mortality from hypertensive sequelae, but there was a low mortality from ischaemic heart disease (Razum, 1997).

Clinical studies suggest that there is a high prevalence of hypertension and its sequalae in Zimbabwe (Matenga et al, 1986). In 100 consecutive cases of stroke studied, 53% were hypertensives, 50% of whom had defaulted treatment while the other 50% were newly diagnosed. In a study of hypertension awareness in communities with different levels of socio-economic development only 26% of hypertensives were aware of their elevated blood pressure status (Matenga et al, 1997). In another study, 66% of patients in a geriatric unit had a diagnosis of hypertension (Wilson and Nhiwatiwa, 1992). In the pilot study among factory workers, hypertension emerged as the most common CVD risk factor with a prevalence of 22% using a cut-off level of 140 and/or 90 mmHg or 14% using a higher cut-off level of 160 and/or 95 mmHg .

Although the general impression is that lipid disorders are uncommon among black Zimbabweans (Castle, 1982), there is an indication that subgroups such as diabetics may have significantly elevated serum total cholesterol, LDL-cholesterol and triglyceride levels (Gomo ZAR, personal communication). Nonetheless, in the survey
among factory workers the lipid profile was generally favourable with low levels of total cholesterol, LDL-cholesterol and triglycerides and protective levels of HDLcholesterol.

1.4.4: Preliminary survey

Formatted
A pilot survey was carried out on a randomly selected group of factory workers in Chitungwiza, an industrial town just outside the city of Harare to determine the prevalence of diabetes and cardiovascular risk factors including (diabetes, hypertension, obesity and lipid profile). For each subject socio-demographic information was obtained, blood pressure and anthropometric measurements were made and a glucose tolerance test was performed.

The study sample consisted of a total of 731 subjects (546 men and 185 women) with a mean (SD) age of 33.7 (9.7) and 33.2 (8.1) years respectively. Most subjects had a modest level of education and income was low. Hypertension emerged as the most common CVD with a prevalence of 22% using a cut-off level of $140 / 90 \mathrm{mmHg}$ or 14% using a higher cut-off level $160 / 95 \mathrm{mmHg}$. Hypertension was significantly associated with several socio-demographic and biochemical variables in men, but only varied with age in women. Using body mass index 60% of women were overweight compared to 16% of men. Obesity (BMI >30) was found in 15% of women. The prevalence of diabetes was 1.8% in men and 1.6% in women. Total cholesterol and triglycerides levels were low suggesting that hyperlipidemia is not a significant risk factor in this population. Cigarette smoking was entirely in males (30% vs. 0%) and only a small proportion of women drank alcohol (6.5% women vs 64\% men).

This pilot study was in a selected group of relatively healthy, young factory workers. The findings cannot, therefore be extrapolated to the whole population of Zimbabwe. From these preliminary findings it was recommended that a national survey be undertaken to take into account the socio-economic and demographic diversity of the population of Zimbabwe in order to gain a better understanding of the distribution and determinants of diabetes and cardiovascular disease risk factors in Zimbabwe. This will help in planning better strategies for intervention in this emerging epidemic.

1.5: SIGNIFICANCE AND RATIONALE OF SURVEY

In most developing countries including Zimbabwe diabetes and cardiovascular diseases in concert with other non-communicable diseases have not been addressed under specific control programmes such as those that exist for several infectious and communicable diseases. In the National Health Strategy for Zimbabwe, 1997-2007 this anomaly has been high-lighted. It was noted that hypertension accounted for more than 40% of total chronic repeat visits to out-patient departments in 2004 in Zimbabwe and that death from all types of cardiovascular diseases occupied the fourth place in the top 10 causes of hospital mortality in the age group five years and above. The strategic document identifies cardiovascular conditions as one of the 10 conditions needing priority action. Furthermore, there is emphasis on the education of individuals, families and communities about the risk factors of non-communicable conditions such as alcohol, smoking, excessive weight gain, etc.

Therefore, NCDs are now increasingly being prioritized and well collected systematic nation-wide data is required to determine the right balance of resource allocation between prevention and care. The World Health Organization has developed a standardized approach (the Stepwise approach) to enable comparisons of data across regions over time, preparing the first ever risk status for major NCDs. The risk factors surveillance approach has been sited as the most efficient mean of providing evidence based data to plan for control and reduction of the impact of these conditions (Jadue L, et al, 2000

In view of the burden of NCDs highlighted above there is need to have a systematic nation-wide data to determine the magnitude of the problem of NCDs so as to inform policy and resource allocation between prevention and care using the WHO criteria.

2.0: OBJECTIVES OF THE STUDY

2.1: GENERAL OBJECTIVE

To assess the risk factors of selected NCDs in the adult population of Zimbabwe using the WHO STEPwise approach to non-communicable diseases surveillance.

2.2: SPECIFIC OBJECTIVES

2.2.1 To assess the distribution of life-style factors (physical activity, tobacco and alcohol use), and anthropometric measurements (body mass index and central obesity) which may impact on diabetes and cardiovascular risk factors.
2.2.2 To identify dietary practices that are risk factors for selected NCDs.
2.2.3 To determine the prevalence and determinants of hypertension
2.2.4 To determine the prevalence and determinants of diabetes.
2.2.5 To determine the prevalence and determinants of serum lipid profile

3.0: METHODOLOGY

3.1: Design

A cross-sectional survey was conducted on a sample of adult Zimbabwean population aged 25 years and above, residing in three randomly selected provinces out of the ten provinces of Zimbabwe. The selected provinces were Mashonaland Central, Midlands and Matebeleland South. The survey was conducted from May to June 2005.

Key

$$
\begin{array}{ll}
\square & \text { Rural Setting Only } \\
\square & \text { Urban Setting Only } \\
\square & \text { Both urban and rural setting }
\end{array}
$$

3.2: WHO STEPwise Approach (STEPS)

STEPS is a sequential process starting with gathering information on key risk factors by the use of questionnaires (Step 1), then moving to simple physical measurement (Step 2) and only then recommending the collection of blood samples for biochemical assessment (Step 3). (Bonita R, et al, 2002). In addition to the three steps used in risk
factor assessment the conceptual framework of STEPS also includes three modules in the assessment of each risk factor, namely core, expanded and optional.

3.3: Adaptation of survey methods and tools

In this survey all the core and selected expanded and optional variables were collected. In addition a food frequency questionnaire and a UNICEF developed questionnaire, the Fortification Rapid Assessment Tool (FRAT) were administered to elicit relevant dietary information.

3.4: Conduct of the survey

3.4.1: National Team

The national team consisted of representatives from the Ministry of Health and Child Welfare (1) and the University of Zimbabwe (3). The members of the team jointly developed the proposal, conducted adaptation of the survey instruments, approached stakeholders and carried out training of the survey team. The MOH\&CW representative provided co-ordination of all survey activities. The University of Zimbabwe representatives provided survey design, clinical, statistical, data management and laboratory expertise.

3.4.2: Field Team

Three teams selected from each of the three survey provinces carried out the survey. Each team comprised of 12 members with the following composition; 1 supervisor, 1 team leader, 7 interviewers (5 senior nurses, 2 nutritionists), 1 laboratory scientist and 2 drivers.

3.4.3: Adaptation of survey tools and training manuals

Formatted
An adaptation workshop was held in June 2004. The objectives of this workshop were; (a) adopt the WHO STEPwise approach and training manuals (b) map out fieldwork activities (c) identify field team members (d) define the age population profile of the selected study sites (e) translate the tools into Shona and Ndebele (the two main vernacular languages in the survey area).

3.4.4: Training of Interviewers

A 5-day training workshop was held in May 2005. The objectives of the training workshop were; (a) how to gain entry into the study areas and households (b) how to conduct interviews (c) how to observe research ethics (d) how to administer questionnaires and complete laboratory forms (e) how to collect, store and transport blood samples (f) how to accurately keep records of laboratory forms and questionnaires (g) how to ensure quality control of all field processes including questionnaires, laboratory forms and specimens.

Interviewers participated in mock interviews and practiced taking both physical measurements and collection of blood samples. Team supervisors were further trained on; (a) checking and correcting interview data (b) editing completed questionnaires (c) complete registration of samples before transportation (d) problem solving in the field (e) field sampling procedures and calculation of sampling intervals.

3.4.5: Pilot test of field procedures

A one day field pilot survey was conducted in both a rural and urban setting with the following objectives; (a) to assess the applicability of the questionnaires to the local communities (b) to assess reactions of the respondents to the research procedures (c) to assess whether the instructions in the field manual were relevant and straightforward (d) to estimate time needed to administer each questionnaire (e) to assess the sequencing/flow of questions (f) to check the content validity of the questions after translation.

This exercise identified issues which enabled revision of critical steps in the survey procedure including changes of items in the questionnaire.

3.4.6: Field Activities

Deployment of teams-Immediately after training, interviewers were divided into 3 teams of 12 each including a supervisor and a team leader. Each team was provided with a field kit that contained: a carrier bag, letters to the relevant authorities (PMDs, Counselors, local leaders), letter to refer those with abnormal results, questionnaires (NCDs, FRAT \& FFQ), consent form, forms (registration checklist, blood collection list, households individual listing, individual household summary sheet, recruitment forms), team field log book, operational manual, pens, pencils, clipboards, notebooks, maps, somatometer for measuring height, scales for weight, tapes for girth, sphygmomanometers, blood specimen collection equipment (needles, disposal bags, syringes, swabs, tourniquets, test tubes, test tube rack, sharp containers, gloves, pipettes, cooler box, glucose powder packed in 75grams sachets, water, disposable tumblers, juice drink and bread. Each member of the research team had a Project bag and introductory letter. Each questionnaire was given a unique identifier, which appeared on the corresponding laboratory form, consent form and blood specimen tube and blood sample forms sent to the laboratory. Each Team leader/interviewer was given a unique code. Each team had 2 vehicles and drivers. One vehicle was to transport the blood specimen form the study site to the hospital laboratory and at times to the central laboratory. Team leaders were responsible for all the sampling procedures, checking completeness of questionnaires, consent forms, laboratory forms, samples collected, checking on the adequacy of samples and general entry approach to the household and community. Supervisors were responsible for the following; (a) overall coordination of their teams (b) ensure team leaders were carrying out field activities properly (c) collecting questionnaires, consent forms, laboratory forms, from the teams (d) collating all materials collected (e) logistical support to research teams. The majority of local interviewers were deployed to work in their respective districts because they were familiar with geography of the area as and the local community. This would also somewhat address the issue of accommodation of the field team.

Formatted

3.4.7: Survey flow

The flow of events during the collection of anthropometric data, oral glucose tolerance test performance and blood collection is shown below.

3.4.8: Blood Sample Collection
 3.4.8.1: Materials-

Tubes-Blood collection tubes (BD Vacutainer tubes), for glucose and lipids were obtained from BD, Belliver Industrial Estate, Plymouth PL6 7BP, UK. BD Plain tubes i.e. containing no anticoagulant were used to collect blood samples for the analysis of cholesterol, triglyceride, and HDL-cholesterol. BD Fluoride tubes were used to collect blood samples for the analysis of glucose.

3.4.8.2: Glucose: (dextrose monohydrate)-

Glucose for glucose load was weighed on Mettler PB 3000 analytical balance (Mettler PB 3000, Mettler Instruments AG, CH-8606 Greifensee-Zurich Switzerland). Sachets of 75 g each were prepared for oral glucose tolerance test performance in the field.

3.4.8.3: Venoject needles-

Multi sample, 21g needles (Terumo, Europe N.V. 3001 Leuven, Belgium) were used to collect blood samples from each participant.

3.4.8.4: Venesection/venepuncture-

Blood samples were collected from participants by registered nurses and before blood sample collection the following were checked that 1) the participant had fasted for 10-12 hours 2) all the tubes had been labeled with the participant's NCD number; 3) the venoject needles were not broken to show the participant that the needle being used had not been used before, 4) 75 g glucose powder, was dissolved in 300 ml of water, in a disposable glass; 5) a watch to check the specific time between glucose load and collection of blood after 2 hours was put in place. Fasting blood samples were collected in a fluoride tube for glucose and plain tube for lipids determinations. Immediately following collection of fasting blood sample each participant was given the glucose load. Timing was then started and another blood sample was collected after 2 hours for glucose measurement only. The team medical laboratory scientists were tasked to ensure compliance with the procedure outlined. The medical scientist checked the samples for haemolysis and clots in the fluoride tube. Samples were stored in a cooler box with a temperature controlled at around 25 degrees.

The team leader further checked that the specimen details and information on the laboratory form concurred in regard to labeling, quantity and quality of sample. If satisfied the samples details were then entered in the register. The team leader would then ensure that samples were securely packed. Samples were then transported in the company of the medical laboratory scientist to the nearest hospital laboratory for separation and dispatch to the Department of Chemical Pathology at the College of Health Sciences, University of Zimbabwe.

3.4.8.5: Quality Control of blood Sample Collection-

The medical laboratory scientist in conjunction with the phlebotomists (nurses) and the team leader checked that the procedures for collection of blood samples from subjects were followed as mentioned above. The bleeding nurse also ensured that each participant was in a sitting comfortable position with the hand resting on a couch before and during collection of blood. After collecting of blood the phlebotomist would carefully removed the tube and place another tube for the next sample. After taking the required samples the nurse carefully removed the venoject needle form the participant. Because the venoject blood collecting method uses the presence of a
vacuum in the tubes, this allows blood to flow direct into the tube minimizing haemolysis. The blood samples were stored around 25 degrees.

Blood sample separation-At the provincial hospital laboratory blood samples were centrifuged at 3000 rpm for 5 minutes. Plasma for glucose and serum for lipids determination were separated and stored at -20 degrees.
3.4.8.6: Transportation of samples-

Manual registration of samples was performed by the team leader and medical laboratory scientist. Blood samples were kept at $20-25^{\circ} \mathrm{C}$ prior to transportation and during transit to the provincial hospital laboratory. Plasma and serum samples were transmitted to the central laboratory from time to time at the discretion of the field team. Transportation time from the hospital laboratory to the central laboratory was approximately 5 hours.

3.4.8.7: Laboratory Procedures at the Central, Sample Receipt, Recording and Storage-

On receipt of samples, the laboratory team checked and documented the following on the laboratory form- (a) date and time of receipt (b) temperature in the boxes in which the samples were packed in (c) quality and quantity of sample (d) that information accompanying the samples tallies with the labeling of the samples. Samples were registered in the laboratory logbook, then the samples were aliquoted and stored at 20C.

3.4.8.8: Registration of Samples-

Formatted
Each sample was registered by name of respondent, province, district and health centre. Laboratory and NCD codes were then allocated. Samples were stored in the freezer in a predetermined order to allow for easy retrieval.

3.4.8.9: Sample Processing and Analysis-

Sample logging-in, separation and storage were done by 3 MSc students under the supervision of two-clinical scientist in the department of Chemical Pathology. All laboratory determinations were performed by two Chemical Pathology lecturers/clinical scientists and 1 medical laboratory scientist working. During field work samples batched and sample analyses were performed in at the end of the field survey from July to September 2005.

3.5.0: Nutritional Survey (Food Frequency Questionnaire) And Fortification Rapid Assessment Tool

A food frequency questionnaire and a fortification rapid assessment tool were administered to obtain information related to dietary patterns and food consumption patterns for potential food vehicles for fortification respectively. Analysis of this data will be performed and reported separately.

3.6.0: Measurements

3.6.1: Step 1: Questionnaire-based assessment:

Formatted

The pre-coded questionnaire consisted of the core (age, sex and education in years and current exposure to tobacco and alcohol diet and physical activity), expanded (rural/urban setting, occupation, average household income) and optional (marital status, medical and health history, past history of smoking and alcohol consumption) variables. The medical and health history component included questions on medication, cigarette use, diabetes, hypertension and other cardiovascular conditions.

3.6.2: Step 2: Physical measurements

Physical assessment included blood pressure, height, weight, waist and hip circumference measurements.

3.6.2.1: Blood pressure

Blood pressure measurements were using a sphygmomanometer and standardized according to recommendations of the American Heart Association [AHA, 1980]. Disappearance of Korotkoff sounds (phase V) was used to register diastolic blood pressure. Two readings were made 2 minutes apart. If the difference was 10 mmHg or more between the two readings a third reading was obtained. The final reading was the average of the two readings or the nearest two readings if a third was obtained.

3.6.2.2: Waist Circumference

The waist circumference was measured using a tape-measure. Measurement was made in the mid-axillary line midway between the last rib and the superior iliac crest. Duplicate measurements were made to the nearest 0.1 cm .

3.6.2.3: Hip measurement

The measurement was made using a tape-measure placed horizontally at the point of maximum circumference over the buttocks. Duplicate measurements were made to the nearest 0.1 cm .

3.6.2.4: Height

Height was measured with the subject standing upright against a wall on which was affixed a height measuring device. Measurements were made with the subject barefoot, standing with the back against the wall and head in the Frankfort position with heels together. The subject was asked to stretch to the fullest and then exhale. When appropriately positioned, they were asked to exhale and a mark was made to mark the height, then measurements taken to the nearest 0.1 cm .

3.6.2.5: Weight

Weight measurements were taken on a pre-calibrated electronic weighing scale. The scale was calibrated daily using a known weight. Subject was weighed dressed in light clothing and barefoot. Measurements were made to the nearest 0.1 kg .

3.6.3: Step 3: Biochemical assessment

At the home visit respondents were asked to fast overnight (12 hours), i.e. not to consume any food except for clear water and to report to the survey clinic the following day. At the clinic, blood was drawn for glucose (fasting and post-prandial) and lipid profiles (total cholesterol, triglyceride and high density lipoprotein cholesterol (HDL-C). Biochemical measurements were centralized at the University
of Zimbabwe, department of Chemical Pathology. Standard methods (as described below) with appropriate QA/QC were used. Field measures to guarantee QA/QC were established (see quality control section)

3.6.3.1: \quad Glucose Determination

Glucose levels were determined on plasma samples which were obtained in a fasting and two hour post glucose load states, using the Synchron CX5 Systems Chemistry analyzer, (Beckman Coulter Inc. Fullerton, CA 92834-3100). Glucose reagent kit Ref 442640, Lot T410262 was used. The glucose assay was standardized by use of synchron AS Multi-calibrators and internal quality control of the assay was assessed by running Beckman coulter; normal and abnormal controls together with the analysis of the participants samples. For external quality controls the laboratory participates in the UK-NEQUAS scheme, which compares the laboratory's performance in relationship to other international laboratories

3.6.3.2: \quad Serum Lipids

3.6.3.2.1: \quad Serum cholesterol Kit Ref 467825, Lot T501276

Serum cholesterol was measured using the Synchron CX5 Systems Chemistry analyzer, (Beckman Coulter Inc. Fullerton, CA 92834-3100). The internal quality control of the cholesterol assay was determined by the use Beckman Coulter Decision Comprehensive Chemistry Control Serum levels 1,2,and 3, normal and abnormal controls. Beckman Coulter, synchron multi-calibrator standards were used. and quality controls using Beckman Culter normal and abnormal controls.

3.6.3.2.2: \quad Triglyceride Kit: Ref 445850, Lot T502091.

The glycerol blanked (TG-B) method was used to determine serum triglyceride the Synchron CX5 Systems Chemistry analyzer, (Beckman Coulter Inc. Fullerton, CA 92834-3100). The triglyceride assay was standardized by use of a synchron multicalibrator and Beckman Coulter Decision Comprehensive Chemistry Control Serum levels 1,2,and 3, normal and abnormal controls.

3.6.3.2.3: HDL-cholesterol Kit, Ref 467820, Lot M504237.

Beckman Coulter, Synchron Systems, HDL-cholesterol Reagent kit no. 467820 was used to determine HDL-c. The HDL-c assay was standardized by the HDL-c calibrator Cat \# 467850.

3.6.3.3: LDL-cholesterol

LDL-c was obtained by calculation using the following formula (LDL-c = Total Cholesterol (HDL-c - Triglyceride)/2 mmol (Friedwald WT, et al, 1972)
3.6.3.4: VLDL-Cholesterol

Formatted
VLDL-c was obtained by calculation as follows VLDL-c = Total cholesterol - (LDL-$\mathrm{c}+\mathrm{HDL}-\mathrm{c})$.

3.7.0: DEFINITIONS

3.7.1: Overweight and Obesity

Formatted

Table 3.1: Body mass index was calculated as follows: weight in $\mathrm{kg} / \mathrm{height}$ in square meters.

Category of relative weight	BMI
Underweight	<18.5
Normal	$18.5-24.9$
Grade 1 overweight	$25.0-29.9$
Grade 2 overweight	$30.0-39.9$
Obesity	>40.0

3.7.2: Central Obesity

Was defined as Waist hip ratio (waist circumference/hip circumference): >0.85 in women and >0.95 in men.
3.7.3: Hypertension

Hypertension was defined as summarized in the table below. Subjects on regular antihypertensive treatment was regarded as having hypertension regardless of their blood pressure readings, but their blood pressures was recorded.

Table 3.2: Definition of hypertension

Category	Systolic (mmHg)	Diastolic (mmHg)
Optimal	<120	<80
Normal	<130	<85
High - Normal	$130-139$	$85-89$
	$140-159$	$90-99$
Grade 1 Hypertension (mild)	$140-149$	$90-94$
Subgroup: Borderline	$160-179$	$100-109$
Grade 2 Hypertension (moderate)	≥ 180	≥ 110
Grade 3 Hypertension (Severe)	≥ 140	<90

3.7.4: Diabetes and Impaired Glucose Tolerance

Formatted
The oral glucose tolerance test was not be administered to known and/or diagnosed diabetics who were on treatment (taking insulin or oral hypoglycemic or dietary). All other participants were asked to fast overnight (after 2200 hours), however, they were allowed to consume their usual intake of water to reduce haemoconcentration. On the morning (from 0600hrs) of the test, a fasting blood sample was drawn using an EDTA vacutainer needles and the subject was given a glucose load of 75 g glucose in 250 mls of water. A second blood sample was drawn two hours after the administration of the glucose load for the measurement of glucose in serum. The blood was separated by
centrifugation within 1 hour. The diagnosis of diabetes was according to the WHO guidelines [1999] as follows:

\mid Table 3.3: Diabetes was defined as summarized in the table below.	
Diabetes diagnostic criteria (WHO standard	Glucose level (mmol/L)
Diabetes	>7.0
Fasting	>11.1
Post-prandial (GTT)	
Oral Impaired Glucose Tolerance	<7.8
Fasting	$7.8-11.1$
Post-prandial	

3.7.5: Lipid Profiles

Table 3.4: \quad Lipids profiles were defined as summarized in the table below.

Profile	Levels(mmol/L)
Total Cholestrol	$<5.2 \mathrm{mmol} / \mathrm{l}$
Level A Hypercholestolaemia	$>6.5 \mathrm{mmol} / \mathrm{l}$
Level B Hypercholestrolaemia	$<0.9 \mathrm{mmol} / \mathrm{l}$
Low HDL Cholesterol	
LDL Cholesterol	>4.1
High LDL-Cholesterol	$>3.4-4.0$
Borderline High-risk LDL-Cholesterol	
Triglycerides	>4.5
High triglycerides	$2.3-4.4$
Borderline triglycerides	

3.8: SAMPLING

3.8.1: Sample Size Determination

Epi Info version 6 was used for sample size determination. According to the 2002 national census the total Zimbabwean population aged 25 years and older was estimated to be 3.9 million. The sample size determination was based on estimates of the prevalence of diabetes and hypertension as reported in previous publications. (references) Sensitivity analysis of the various sample size estimations using the two conditions is summarized below:

Table 3.5: \quad Sample size estimates for different prevalences of diabetes mellitus and hypertension

Outcome	Prevalence Estimates	Sample Size
Diabetes mellitus	$4.0-4.8 \%$	2304
Hypertension	$12.0-15.0 \%$	451

The bigger sample size of 2,304 was used in this survey to achieve a power of 80% and a confidence level of 95%. Adjusting for a non-response rate of 20% (refusals, non-availability at selected households and defaulters from stages two and three), a sample size of 3000 was estimated for the survey.

3.9: SAMPLING STRATEGY

Zimbabwe is divided into 10 provinces including the cities of Harare and Bulawayo considered as provinces. The provinces are further divided to give 60 districts. The Health delivery system in each province is under the control of a Provincial Medical Director except in Harare and Bulawayo where this function falls under the Medical Director of the City Health Department.

The 2002 population census estimates the population of Zimbabwe to be 11.6 million. The population of Zimbabwe is socio-economically and demographically diverse. But, in general most epidemiological and sociological surveys have grouped individuals into urban, rural, farming and mining communities.

The sampling strategy employed was a multistage sampling with 3 stages. Sampling was by a modification of the probability proportion to size (PPS) cluster sampling technique.

Table 3.6: Sampling strategy and study sites.

Pable 3.6: Sampling strategy and study sites.					
Province	Districts	Health Centers	Popln 25+	Sample Size	Proportion
Midlands	Kwekwe urban		121134	443	0.40
	Fweru Urban		103643	379	0.34
	Zvishavane		46937	172	0.15
	Chirumanzi		33125	121	0.11
			$\mathbf{3 0 4 8 3 9}$	$\mathbf{1 1 1 5}$	$\mathbf{0 . 3 7}$
			57264	210	0.23
	Mash Central	Bindura Urban		33005	121
	Centenary		63924	234	0.13
	Guruve		93717	343	0.26
	Mazoe		$\mathbf{2 4 7 9 1 0}$	$\mathbf{9 0 7}$	$\mathbf{0 . 3 8}$
			172788	632	0.65
			19972	73	0.07
	Bat South		29431	108	0.11
	Umzingwane		4577	17	0.02
	Insiza		40833	149	0.15
	Gwanda Urban		$\mathbf{2 6 7 6 0 1}$	$\mathbf{9 7 9}$	$\mathbf{0 . 3 3}$
	Gwanda Rural			$\mathbf{3 0 0 0}$	$\mathbf{1}$

The first stage was a random selection of three provinces from the ten provinces of Zimbabwe (see map of Zimbabwe). Within each selected province four districts were randomly selected. Within each selected district a total of four health centres were randomly selected. Communities within the catchment areas of the selected health centres were included in the sampling frame of the survey. The major divisions of the Zimbabwean community are into urban and rural communities and the main occupations groups are farming and mining. The sampling strategy ensured that there was a balance between urban and rural communities. An attempt was made to ensure that in both urban and rural communities, farming and mining communities were represented in sampled districts. Within each community a ward (rural and urban communities), a farm or a mine was selected. These were selected within the catchment area of a health centre, which was then used as the operation point for the research team.

3.9.1: Sampling of households

The sampling of households in each selected ward was based on the systematic interval that was defined by the team leader based on the required sample size and the population size of the catchment area. On entering the selected ward the research team went to the furthest north-west point where there was an outstanding feature e.g. a prominent landmark like a river, a dip tank, a school, business centre, borehole etc. as their starting point. From that starting point a household was randomly selected going in an easterly direction. From that household, households were systematically sampled using a defined systematic interval (SI). The team leader defined the SI by SI = population size in the catchment area/ required sample size for the area.

3.9.2: Sampling within households

After identifying the household, the head of the household or a representative described the household composition in order for the interviewer to identify the key
person for the interview.

3.9.3: Informed Consent

Formatted
The research team obtained two copies of the written informed consent forms. One of the copies remained with the respondent and the research team kept the other. Step 1 and FRAT questionnaires were then administered at the household. Interviews were conducted in a manner that ensured confidentiality and privacy. Each respondent was allocated a temporary unique identifier and requested to report to the health centre for step 2 and 3 of the survey on the following day. Respondents were asked not to consume any food or drink except water for duration of 10 to 12 hours. In practice respondents were told not to eat anything following their last meal of the day (usually $7-8 \mathrm{pm}$) until they report to the health centre at 6am the following day. Respondents known to be diabetic were not asked to starve because they did not undergo GTT.

The sample, questionnaire and laboratory form belonging to one respondent were labeled with unique codes bearing the same identification number.

Where the respondent was not at home, a note was left to request them to visit the health centre on the following day. For those who were unable to participate on the day of visit, the research team made an appointment to re-visit them at a more convenient time.

4.0: DATA MANAGEMENT

4.1: \quad Training of data entry clerks

Five data entry clerks were recruited and trained for one week. The selection of data entry clerks was based on their performance during previous research carried out by the MOH\&CW. The training of the data entry clerks involved the following:

- Familiarization with the NCD, FRAT and FFQ questionnaires.
- Familiarization with the data entry template.
- Development of codes for open-ended questions.
- Statistical package (EPI Info 6).
- Development of a data entry template using EPI6.
- Development of check files for each template
- Trial runs (mock runs) to check whether template was complete and user friendly for data entry.
- Double entry (what it involves and how to do it and why it should be done).
- Pre-primary data cleaning (check whether denominators are tallying) of the data entry template was done.

4.2: \quad Data Entry for NCD, FRAT and FFQ questionnaires

The questionnaires were sequentially numbered and were then divided among the five data entry clerks. Each one of the data entry clerks had a unique identifier for quality control purposes. Hence, the data was entered into five separate files using the statistical package EPI Info version 6.0. The data entry clerks inter-changed their files for double entry and validation of the data. Preliminary data cleaning was done for each of the five files. The five files were then merged to give a single file. The merged file was then transferred to STATA Version 7.0 using Stat Transfer version 5.0.

4.3: Data Cleaning

A data-cleaning workshop was held with the core research team members. The objectives of the workshop were:

1. To check all data entry errors.
2. To assess any inconsistencies in data filling.
3. To assess any inconsistencies in data entry.
4. To assess completeness of the data entered.

4.4: Data Merging

There were two datasets (NCD questionnaire dataset and laboratory dataset) after the data entry process. The two files were merged by joining corresponding observations from the NCD questionnaire dataset with those from the laboratory dataset into single observations using a unique identifier. The ID number was chosen as the unique identifier since it appeared in both data sets. The main aim of merging was to combine the two datasets containing information on behaviour of individuals and the NCD laboratory parameters. When the two data sets were merged, a new merge variable was created. The merge variable took values 1,2 and 3 . The values taken were interpreted as below:

Merge variable $==1$	Observation appeared in the NCD questionnaire data set but a corresponding observation was not in the laboratory data set
Merge variable $==2$	Observation appeared in the laboratory data set but a corresponding observation did not appear in the questionnaire data set
Merge variable $=3$	Observation appeared in both data sets and reflects a complete merge of the two data sets.

4.5: \quad Data Cleaning After Merging

Data cleaning involved identifying the observations where the merge variable values were either 1 or 2 . Merge status for each observation was also changed after effecting any corrections. The other two unique variables that were used in the cleaning were Province, district and health centre since they also appeared in both data sets.

4.5.1: Objectives of cleaning:

1. Match common variables in both data sets and identify inconsistencies in other matching variables e.g. province, district and health centre.
2. To check for any data entry errors.

4.6: Data Analysis

This preliminary stage of the survey report employed simple descriptive statistics with means, proportions and frequency distributions. 95% CI were used as a measure of precision on the estimated population parameters. In the next report further analysis will be performed as follows. T-tests will be used to compare continuous data such as systolic Blood Pressure, LDL-C HDL-C, and triglycerides between groups. Chisquare tests will be used to assess relationships between variables and analysis of variance (ANOVA) for continuous variables for comparisons across more than two groups. In situations where the normality assumptions are not met, the non-parametric equivalents of the above tests will be used (Fisher's exact test, Kruskal Wallis test, etc). Logistic regression analysis will be employed to assess predictors of diabetes and hypertension in each particular group controlling for potential confounders.

5.0 RESULTS

5.1: Introduction

The survey fieldwork was conducted in the months of May to July 2005 simultaneously in all the three selected provinces of Mashonaland Central, Midlands and Matebeleland South, in an adult population aged 25 years and above. A total of 3,081 respondents were surveyed and the distribution of respondents by province is summarized in Figure 1. Overall the response rate was 102\% based on STEP 1 of STEPS. Response rates from Midlands and Mashonaland Central provinces were more than the targeted sample size, whilst Matebeleland South had less than the targeted sample size as indicated in Figure 1.

Figure 5.1: - Response rate based on STEP 1 versus the intended sample size.

5.2: - Response rate by province and rural/urban community

Assessment of response rate by province and by rural/urban community was also done and Table 4.1 summarizes the results.

Table 5.1: - Distribution of respondents by province, rural/urban community and WHO STEPS.

NCDs steps	Midlands			Mash Central			Mat South			Total		
	Urban	Rural	Total									
STEP1	724	465	1189	256	688	944	185	763	948	1165	1916	3081
STEP 2*	423(58.4)	382(82.2)	805(67.7)	182(71.1)	572(83.1)	754(79.9)	182(98.4)	721(94.5)	903(95)	787(67.6)	1675(87.4)	2462(80)
STEP 3*	373(51.5)	313(67.3)	686(57.7)	161(62.9)	514(74.7)	675(71.5)	170(91.9)	652(85.5)	822(86.7)	704(60.4)	1479(77.2)	2221(72.1)

Note* All the percentages of STEPS 2 and 3 are calculated based on STEP 1.

Table 5.1 shows that from the targeted sample size, in STEP 1 the STEP 2 and 3 response rate was above 80% for STEP 2 and above 70% for STEP 3. Of note is the response rate in Midlands, which was lower than the other two provinces in both STEP 2 and 3. This notable difference was due to the fact that Midlands had more respondents sampled from the urban communities. A higher proportion of urban respondents was formally employed and therefore did not complete STEP 2 and 3 due to conflict with work schedules.

5.3: Demographic profile of respondents

The demographic characteristics of respondents are summarized in Table 5.2.
The majority of respondents were married (67.4\%), followed by the widowed (20.1\%). There was a 1:3 male to female sex distribution of respondents. This distribution pattern was similar across all the provinces.

5.3.1: Age Distribution

Formatted

Age was indicated in 97.8% of respondents. Over 50% of respondents in Midlands and Mashonaland Central were aged 44 years or less. However in Matebeleland South 62.8\% or respondents were aged 45 years and higher.

5.3.2: Marital status

Formatted
Across all the 3 provinces the majority of respondents were married, which is in keeping with the cutoff age of the survey being 25 years.

5.3.3: Educational status

The level of education of the survey population was high with 85.7% having achieved at least primary level education. There were differences in the educational levels across the three provinces partly due to the urban rural mix of the survey respondents.

5.3.4: Employment status

Unemployment was high in this survey, the average unemployment rate stood at of 40.8%. This trend was similar for Midlands and Matebeleland South, while Midlands had an unemployment rate less than 20%. This was probably partly accounted for by the rural urban mix of the survey respondents.

5.3.5: Discussion of demographic profile

The sex distribution is inline with the population profile of Zimbabwe were majority are women and it is also worth noting that most women were found at home unlike men who do day to day activities outside the home, hence difficult o reach. The age distribution was inline with the 2002 National Census population pyramid with the majority of respondents being in the younger age group. There was a notable difference in the population distribution of Mat South, where majority where in the older age group, which has potential impact of the prevalence of NCDs. One of the reasons is migration where most of the younger generation has moved to neighboring countries (South Africa and Botswana) in search of employment. The educational level, which was found to be different across the provinces is supported by the fact that most respondents from Midlands who were urban based and were working were more educated since most of them were employed. High unemployment rates might lead to sedentary lifestyle, which is a risk factor for NCDs.

Table 5.2: Distribution of respondents by age group and Province

Characteristics	Midlands $\mathrm{N}=1189$	Mash Central $\mathbf{N}=\mathbf{9 4 4}$	Mat South $\mathbf{N}=\mathbf{9 4 8}$	$\begin{gathered} \text { Total } \\ \mathbf{N}=\mathbf{3 0 8 1} \end{gathered}$
Sex				
Male	371(31.2)	191(20.2)	191(20.2)	769(25.0)
Female	818(68.8)	757(79.8)	757(79.8)	$2312(75.0)$
Age group	$\mathrm{N}=1160$	$\mathrm{N}=920$	$\mathrm{N}=932$	N=3012
25-34	445(38.4)	317(34.5)	165(17.7)	927(30.8)
35-44	302(26.0)	207(22.5)	182(19.5)	691(22.9)
45-54	209(18.0)	162(17.6)	216(23.2)	587(19.5)
55-64	112(9.7)	117(12.7)	154(16.5)	383(12.7)
$65+$	92(7.9)	117(12.7)	215(23.1)	424(14.1)
Marital Status	$\mathbf{N}=1184$	$\mathrm{N}=943$	$\mathbf{N}=947$	N=3074
Single	79(6.7)	46(4.9)	64(6.8)	189(6.2)
Married	864(73)	651(69.0)	557(58.8)	2 072(67.4)
Divorced	42(3.6)	53(5.2)	57(6.0)	152(4.9)
Widowed	186(15.7)	185(19.6)	247(26.1)	618(20.1)
Separation	12(1.0)	8(0.9)	13(1.4)	33(1.1)
Cohabiting	1(0.1)	0 (0.)	9(0.9)	10(0.3)
Level of education	N=1185	N=944	N=948	$\mathbf{N}=3077$
None	97(8.2)	165(17.5)	177(18.7)	439(14.3)
Primary	423(35.7)	427(45.2)	506(53.4)	1 356(44.1)
Secondary	602(50.8)	338(35.8)	237(25.0)	1 177(38.2)
Tertiary	63(5.3)	14(1.5)	28(2.9)	105(3.4)
Occupation	N=1181	$\mathbf{N}=\mathbf{9 4 4}$	$\mathrm{N}=947$	N=3072
Informal	271(22.9)	70(7.4)	50(5.3)	391(12.7)
Formal skilled	184(15.6)	56(5.9)	57(6.0)	297(9.7)
Housewife	499(42.3)	294(31.1)	329(34.7)	1 122(36.5)
Not employed	219(18.5)	524(55.5)	511(54.0)	$1254(40.8)$
Student	8(0.7)	0(0.0)	0 (0)	8(0.3)

5.4: Alcohol consumption Pattern

Alcohol consumption was divided into current and history of alcohol consumption. The details of each are summarized in the sections below.

5.4.1: Current alcohol consumption

On the question of current alcohol consumption, 97% of the total answered this question. The prevalence of alcohol consumption by province, age group and gender is summarized in Table 4.4. The prevalence of alcohol consumption increased with age across all the three provinces, with the exception of Mashonaland Central, where alcohol consumption peaked at the 45-54 year age group (see figure 5.2). In terms of sex distribution, males were four times more likely to consume alcohol as compared to females.
,Table 5.3a: Prevalence of current alcohol consumption by province, age group and gender

	Midlands$\mathrm{N}=1160$		Mash Central$\mathrm{N}=920$		Mat South$\mathrm{N}=932$		Total$\mathrm{N}=3012$	
Age group	N^{*}	\%	\mathbf{N}^{*}	\%	N^{*}	\%	\mathbf{N}^{*}	\%
25-34	445	29.0	317	14.5	165	11.5	927	20.9
35-44	302	33.4	207	17.9	182	18.1	691	24.8
45-54	209	35.4	162	22.2	216	19.4	587	25.9
55-64	112	34.8	117	17.1	154	20.8	383	23.8
65 +	92	47.8	117	20.5	215	28.8	424	30.7
Overall	1160	33.4	920	17.7	932	20.2	3012	24.5
Sex	N^{*}	\%	\mathbf{N}^{*}	\%	N^{*}	\%	N	\%
Males	371	65.8	207	45.9	191	56.0	769	58.0
Females	818	18.6	737	10.0	757	11.5	2312	13.5

Total number within age group or sex

Figure 5.2:- Prevalence of alcohol consumption by age group and province

5.4.3: History of alcohol consumption

History of alcohol consumption showed that males were more likely to report ever having consumed alcohol across all the 3 provinces as compared to their female counterpart (table 5.3a). Overall Midlands had the highest proportion of male participants who reported everconsumed alcohol. Of note is the fact that the peak age of alcohol consumption among males was $45-54$ year age group in all the 3 provinces with the exception of Midlands, which peaked at 55-64 year age group.

On the history of ever-consumed alcohol in the past 12 months, both sexes across all the age groups and provinces had a higher reporting of consuming alcohol. Of not is the fact that over 50% of both sexes reported high consumption with the exception of Mash Central age group $65+$ females and Mat South age group $45-54$ females where only 22.2% and 16% reported alcohol consumption respectively.

Table 5.3b:- Proportion of respondents who ever consumed alcohol by province, age group and by gender

Province	Sex	$\begin{gathered} \hline 25-34 \\ \mathbf{N}^{*} \\ \mathbf{n (\%) ^ { * * }} \\ \hline \end{gathered}$	$\begin{gathered} \hline 35-44 \\ \mathbf{N}^{*} \\ \mathbf{n (\%) ^ { * * }} \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Overall } \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \\ \hline \end{gathered}$
Midlands	Male	$\begin{gathered} 129 \\ 78(60.4) \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ 60(71.4) \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 45(68.2) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 28(77.8) \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ 29(59.2) \\ \hline \end{gathered}$	$\begin{gathered} 364 \\ 240(65.9) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 316 \\ 51(16.1) \\ \hline \end{gathered}$	$\begin{gathered} 218 \\ 41(18.8) \\ \hline \end{gathered}$	$\begin{gathered} 143 \\ 29(20.3) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ 11(14.5) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 15(34.9) \\ \hline \end{gathered}$	$\begin{gathered} 796 \\ 147(18.5) \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 60 \\ 26(43.3) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 19(46.3) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 23(62.2) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 10(43.5) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 15(34.9) \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 93(45.6) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 257 \\ 20(7.8) \\ \hline \end{gathered}$	$\begin{gathered} 166 \\ 18(10.8) \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 13(10.4) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 10(10.6) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 9(12.2) \\ \hline \end{gathered}$	$\begin{gathered} 716 \\ 70(9.8) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 27 \\ 11(40.7) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 19(65.5) \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 27(71.1) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 16(45.7) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ 33(54.1) \\ \hline \end{gathered}$	$\begin{gathered} 190 \\ 106(55.8) \end{gathered}$
	Female	$\begin{gathered} 138 \\ 8(5.8) \end{gathered}$	$\begin{gathered} 153 \\ 14(9.2) \end{gathered}$	$\begin{gathered} 178 \\ 15(8.4) \end{gathered}$	$\begin{gathered} 119 \\ 16(13.5) \\ \hline \end{gathered}$	$\begin{gathered} 154 \\ 29(18.8) \\ \hline \end{gathered}$	$\begin{gathered} 742 \\ 82(11.1) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 216 \\ 115(53.2) \\ \hline \end{gathered}$	$\begin{gathered} 154 \\ 98(63.6) \\ \hline \end{gathered}$	$\begin{gathered} 141 \\ 95(67.4) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 54(57.5) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ 77(50.3) \end{gathered}$	$\begin{gathered} 758 \\ 439(57.9) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 711 \\ 79(11.1) \\ \hline \end{gathered}$	$\begin{gathered} 537 \\ 73(13.6) \end{gathered}$	$\begin{gathered} 446 \\ 57(12.8) \\ \hline \end{gathered}$	$\begin{gathered} 298 \\ 37(12.8) \\ \hline \end{gathered}$	$\begin{gathered} 271 \\ 53(19.6) \\ \hline \end{gathered}$	$\begin{gathered} 2254 \\ 299(13.3) \end{gathered}$

* indicates the total number of respondents within age group and sex
** indicates the proportion who consumes alcohol within age group and sex

Table 5.3c: Proportion of study participants ever consumed alcohol within past 12 months by province,

Province	Sex	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \mathrm{~N}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 35-44 \\ \mathbf{N}^{*} \\ \mathbf{N}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 45-54 \\ \mathbf{N}^{*} \\ \mathrm{~N}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 55-64 \\ \mathbf{N}^{*} \\ \mathrm{~N}(\%)^{* *} \\ \hline \end{gathered}$	$65+$ N^{*} $\mathrm{~N}(\%)^{* *}$	$\begin{gathered} \hline \text { Overall } \\ \mathbf{N}^{*} \\ \mathbf{N}(\%)^{* *} \\ \hline \end{gathered}$
Midlands	Male	$\begin{gathered} 78 \\ 66(84.6) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 42(70.0) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ 36(80.9) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 25(89.3) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 25(86.2) \\ \hline \end{gathered}$	$\begin{gathered} 240 \\ 194(80.8) \end{gathered}$
	Female	$\begin{gathered} 51 \\ 28(54.9) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 27(65.9) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 21(72.4) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 4(36.3) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 9(60.0) \end{gathered}$	$\begin{gathered} 147 \\ 89(60.5) \end{gathered}$
Mash Central	Male	$\begin{gathered} 26 \\ 26(100) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 17(89.5) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 16(69.6) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 10(100) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 11(73.3) \\ \hline \end{gathered}$	$\begin{gathered} 93 \\ 80(86.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 20 \\ 13(65.0) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 12(66.7) \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 9(69.2) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 7(70.0) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 2(22.2) \end{gathered}$	$\begin{gathered} 70 \\ 43(61.4) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 11 \\ 10(90.9) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 17(89.5) \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 24(88.9) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 14(87.5) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 26(78.8) \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ 91(85.9) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline 8 \\ 7(87.5) \end{gathered}$	$\begin{gathered} 14 \\ 8(57.1) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 9(16.0) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 11(68.8) \end{gathered}$	$\begin{gathered} 29 \\ 19(65.5) \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ 54(65.9) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 115 \\ 102(88.7) \end{gathered}$	$\begin{gathered} 98 \\ 76(77.6) \\ \hline \end{gathered}$	$\begin{gathered} 95 \\ 76(80.0) \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ 49(90.7) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 62(80.5) \\ \hline \end{gathered}$	$\begin{gathered} 439 \\ 365(83.1) \end{gathered}$
	Female	$\begin{aligned} & 79 \\ & 48(60.8) \\ & \hline \end{aligned}$	$\begin{gathered} 73 \\ 47(64.4) \\ \hline \end{gathered}$	$\begin{gathered} 57 \\ 39(68.4) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 22(59.5) \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ 30(56.6) \\ \hline \end{gathered}$	$\begin{gathered} 299 \\ 186(66.2) \end{gathered}$

5.5: Tobacco consumption

A total of 3003(97.5\%) people responded to the question on tobacco consumption. The rate of current tobacco consumption increased with age across all the provinces, with highest tobacco consumption being noted in Midlands among the 65 + year age group (figure 5.3). In terms of sex distribution, males were 6 times more likely to consume tobacco products as compared to females.

Table 5.4a: Prevalence of tobacco use/consumption by province, age group and gender.

	Midlands$N=1160$		Mash Central$\mathrm{N}=920$		Mat South$\mathbf{N}=923$		Total$\mathbf{N}=3003$	
Age group	\mathbf{N}^{*}	(\%)	\mathbf{N}^{*}	\%	\mathbf{N}^{*}	\%	N	\%
25-34	445	9.0	317	4.1	165	4.9	927	6.6
35-44	302	10.9	207	10.6	182	9.3	691	10.4
45-54	209	16.3	162	11.1	216	11.1	587	13.0
55-64	112	25.0	117	13.7	154	11.7	383	16.2
65+	92	32.6	117	15.4	215	17.2	424	20.1
Overall	1160	14.2	920	(9.5)	923	(11.2)	3012	11.8
Sex	N*	\%	N^{*}	\%	N^{*}	\%	\mathbf{N}^{*}	\%
Males	371	34.5	207	30.9	191	34.0	769	33.4
Females	818	5.5	737	3.8	757	5.6	2312	5.0

*Total number within age group or sex
Figure 5.3: - Prevalence of smoking by province and age group

The distribution of current smokers was significantly different between males and females across all the age group with males being about 4 times more likely to be current smokers of tobacco only when compared to females.

Table 5.4b: Proportion of respondents who are currently using tobacco products only (cigarettes, cigars and pipes) by age and sex

Smoking status	Sex	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \mathbf{N}^{*} \\ \mathbf{n (\%)}{ }^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \\ \hline \end{gathered}$
Currently smoke tobacco products only	Male	$\begin{gathered} 56 \\ 48(85.7) \\ \hline \end{gathered}$	$\begin{gathered} 55 \\ 48(87.3) \\ \hline \end{gathered}$	$\begin{gathered} 55 \\ 44(80.0) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 31(77.5) \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ 30(65.2) \\ \hline \end{gathered}$	$\begin{gathered} 252 \\ 201(79.8) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 5 \\ 2(40.0) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 4(23.5) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 5(26.3) \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 6(27.3) \end{gathered}$	$\begin{gathered} 39 \\ 12(30.8) \\ \hline \end{gathered}$	$\begin{gathered} 102 \\ 29(28.4) \\ \hline \end{gathered}$

5.5.2: History of Tobacco consumption

Generally the history of tobacco consumption increased with age across all the 3 provinces. Of note is the fact that males where more likely to report history of tobacco consumption when compared to females. Overall males were 6 times more likely to use tobacco products than females.

Table 5.4c: - Proportion of respondents who reported use of tobacco products by province, age group

Province	Sex	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \end{gathered}$	35-44 N* n(\%)**	$\begin{gathered} \hline 45-54 \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \mathbf{N}^{*} \\ \mathrm{n}(\%)^{* *} \end{gathered}$	$\begin{gathered} 65+ \\ \mathbf{N}^{*} \\ \mathbf{n}(\%)^{* *} \end{gathered}$	Overall \mathbf{N}^{*} n(\%)**
Midlands	Male	$\begin{gathered} 129 \\ 38(29.5) \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ 23(27.4) \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 26(39.4) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 19(52.8) \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ 20(40.8) \\ \hline \end{gathered}$	$\begin{gathered} 364 \\ 126(34.6) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 316 \\ 2(0.6) \\ \hline \end{gathered}$	$\begin{gathered} 216 \\ 10(4.6) \end{gathered}$	$\begin{gathered} 143 \\ 8(5.6) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ 9(11.8) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 10(23.3) \\ \hline \end{gathered}$	$\begin{gathered} 796 \\ 39(4.9) \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 60 \\ 11(18.3) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 17(41.5) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 14(37.8) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 9(39.1) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 11(25.6) \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 62(30.4) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 275 \\ 2(0.8) \\ \hline \end{gathered}$	$\begin{gathered} 166 \\ 5(3.0) \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 4(3.2) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 7(7.50 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 7(9.5) \\ \hline \end{gathered}$	$\begin{gathered} 716 \\ 25(3.5) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 27 \\ 7(25.9) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 15(51.7) \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 16(42.1) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 12(34.3) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ 15(24.6) \\ \hline \end{gathered}$	$\begin{gathered} 190 \\ 65(34.2) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 138 \\ 1(0.7) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ 2(1.3) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ 8(4.5) \\ \hline \end{gathered}$	$\begin{gathered} 119 \\ 6(5.0) \end{gathered}$	$\begin{gathered} 154 \\ 22(14.3) \\ \hline \end{gathered}$	$\begin{gathered} 742 \\ 39(5.3) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 216 \\ 56(25.9) \\ \hline \end{gathered}$	$\begin{gathered} 154 \\ 55(35.7) \\ \hline \end{gathered}$	$\begin{gathered} 141 \\ 56(39.7) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 40(42.6) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ 46(30.1) \\ \hline \end{gathered}$	$\begin{gathered} 758 \\ 253(33.4) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 711 \\ 5(0.7) \\ \hline \end{gathered}$	$\begin{gathered} 537 \\ 17(3.2) \end{gathered}$	$\begin{gathered} 446 \\ 20(4.5) \end{gathered}$	$\begin{gathered} 289 \\ 22(7.6) \end{gathered}$	$\begin{gathered} 271 \\ 39(14.4) \\ \hline \end{gathered}$	$\begin{gathered} 2254 \\ 103(4.6) \\ \hline \end{gathered}$

5.6: Discussion on alcohol consumption and tobacco use

This study has shown that alcohol and tobacco consumption is very high among the study sample. Of note is the fact that males where outstanding in terms of both tobacco and alcohol consumption. It is known that those who consume alcohol are likely to be smokers. This relationship was demonstrated in this study. The prevalence of tobacco use of 11.8% is inline with the national prevalence of the ZDHS 2002.

5.7.0: Physical Inactivity

Physical inactivity was assessed in three categories, at work, during transportation and at leisure time. Physical inactivity at work was defined in three categories, firstly as work involving mostly sitting or standing with walking for no more than 10 minutes at a time, secondly work that does not involve vigorous activities like heavy lifting, digging or construction work for at least 10 minutes at a time and thirdly in term of number of days per week one does vigorous activities as part of one's work. While physical inactivity on transportation was defined by walking or cycling for no more than 10 minutes continuously to get to and from places. On leisure it was defined as recreation or sport or leisure time which involve mostly sitting, reclining or standing with no physical activity lasting more than 10 minutes at a time and whether during leisure time one does not do any vigorous activities like running, or strenuous sports, weight lifting for at least 10 minutes at a time.

| 5.7.1: Physical inactivity at work.

Generally the prevalence of physical inactivity during normal working hours was high (50\%) in all the age groups, see Table 5.5a.Of note is the fact that Matebeleland South province reported the highest prevalence of physical inactivity during normal working hours (above 70%) in all age groups and both sexes as compared to other provinces. The distribution of physical inactivity was not significantly different among females and males in all the provinces.

Table 5.5a): Percentage of respondents reporting physical inactivity during normal working hours by province and age group(work involving mostly sitting or standing with walking for no more than 10 minutes at a time)

Province	Sex	$25-34$ \mathbf{N}^{*} $\%(95 \% \mathrm{CI})$	$35-44$ \mathbf{N}^{*} $\%(95 \% \mathrm{CI})$	$45-54$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$55-64$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$65+$ N^{*} $\%(95 \% \mathrm{CI})$	$\begin{gathered} \hline \text { Overall } \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
Midlands	Male	$\begin{gathered} 129 \\ 45.0(36.2-53.7) \end{gathered}$	$\begin{gathered} 84 \\ 50.0(39.1-60.9) \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ 56.9(44.6-69.3) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 41.7(24.7-58.6) \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ 38.8(24.6-52.9) \end{gathered}$	$\begin{gathered} 363 \\ 47.1(41.9-52.3) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 316 \\ 46.8(41.3-52.4) \end{gathered}$	$\begin{gathered} 218 \\ \text { 48.2(41.5-54.9) } \end{gathered}$	$\begin{gathered} 142 \\ 41.6(33.4-49.8) \end{gathered}$	$\begin{gathered} 76 \\ 40.8(29.5-52.1) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 41.9(26.5-57.2) \end{gathered}$	$\begin{gathered} 795 \\ \text { 45.4(41.9-48.9) } \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 60 \\ 50.0(37.0-63.0) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 41.5(25.7-57.2) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 43.2(26.5-60.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 23 \\ 43.5(21.6-65.4) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 58.1(42.8-73.5) \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 48.0(41.1-55.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 257 \\ 60.7(54.7-66.7) \end{gathered}$	$\begin{gathered} \hline 166 \\ 41.0(33.4-48.5) \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 41.6(32.8-50.4) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 42.6(32.4-52.7) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 62.2(50.8-73.5) \\ \hline \end{gathered}$	$\begin{gathered} 716 \\ 50.6(46.9-54.2) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 27 \\ 81.5(65.8-97.1) \end{gathered}$	$\begin{gathered} 29 \\ 72.4(55.1-89.7) \end{gathered}$	$\begin{gathered} 37 \\ 81.1(67.8-94.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ 77.1(62.5-91.8) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ 72.1(60.6-83.7) \end{gathered}$	$\begin{gathered} 189 \\ 76.2(70.1-82.3) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 137 \\ 79.6(72.7-86.4) \end{gathered}$	$\begin{gathered} 153 \\ 74.5(67.5-81.5) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ 74.7(68.3-81.2) \\ \hline \end{gathered}$	$\begin{gathered} 119 \\ 73.1(65.0-81.2) \end{gathered}$	$\begin{gathered} 154 \\ 76.6(69.9-83.4) \end{gathered}$	$\begin{gathered} 741 \\ 75.7(72.6-78.8) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 216 \\ 50.9(44.2-57.6) \end{gathered}$	$\begin{gathered} 154 \\ 52.7(44.0-59.9) \end{gathered}$	$\begin{gathered} 139 \\ 59.7(51.5-68.0) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 55.3(45.1-65.6) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ 57.5(49.6-65.4) \end{gathered}$	$\begin{gathered} 756 \\ 54.6(51.1-58.2) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 710 \\ 58.2(54.5-61.8) \\ \hline \end{gathered}$	$\begin{gathered} 537 \\ 53.5(49.2-57.7) \\ \hline \end{gathered}$	$\begin{gathered} 445 \\ 54.8(50.2-59.5) \\ \hline \end{gathered}$	$\begin{gathered} 289 \\ 54.7(48.9-60.4) \\ \hline \end{gathered}$	$\begin{gathered} 271 \\ 62.2(61.5-72.8) \end{gathered}$	$\begin{gathered} 2252 \\ 57.0(55.0-59.1) \end{gathered}$

5.7.2:- Physical inactivity at work (no vigorous activity)

Percentage of respondents reporting no vigorous physical activity during working hours was more than 30% in all the provinces. How ever Mashonaland Central province, among the females, reported the highest (above 50\%) rate of physical inactivity across all age groups. Of note physical inactivity was more prevalent in the 65 + age group, this is supported by the fact that the older one becomes the less vigorous activities one engages in.

Table 5.5b: Percentage of respondents reporting no vigorous physical activity at work by province and age group

Province	Sex	$\begin{gathered} 25-34 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 35-44 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 45-54 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 55-64 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 65+ \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \hline \text { Overall } \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$
Midlands	Male	$\begin{gathered} 127 \\ 37.8(29.2-46.3) \end{gathered}$	$\begin{gathered} 84 \\ 33.3(23.0-43.6) \end{gathered}$	$\begin{gathered} 65 \\ 35.4(23.4-47.3) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 27.8(12.4-43.1) \end{gathered}$	$\begin{gathered} 49 \\ 26.5(13.7-39.3) \end{gathered}$	$\begin{gathered} 361 \\ \hline 33.8(28.9-38.7) \end{gathered}$
	Female	$\begin{gathered} 316 \\ \text { 55.7(50.2-61.2) } \\ \hline \end{gathered}$	$\begin{gathered} 218 \\ 40.4(33.8-46.9) \end{gathered}$	$\begin{gathered} 141 \\ 36.2(28.1-44.2) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \hline 26.3(16.2-36.4) \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ \text { 47.6(31.9-63.4) } \\ \hline \end{gathered}$	$\begin{gathered} 793 \\ 44.8(41.3-48.2) \end{gathered}$
Mash Central	Male	$\begin{gathered} 60 \\ 41.7(28.8-54.5) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 41.5(25.7-57.2) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 51.4(34.5-68.2) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 43.5(21.6-65.4) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 72.1(58.1-86.1) \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 50.0(43.1-56.9) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 257 \\ \text { 69.3(63.6-74.9) } \end{gathered}$	$\begin{gathered} 166 \\ 53.0(45.3-60.7) \end{gathered}$	$\begin{gathered} 125 \\ 60.1(51.3-68.7) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 55.3(45.1-65.6) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 64.9(53.7-76.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 716 \\ \text { 61.6(58.0-65.2) } \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 27 \\ 25.9(8.3-43.6) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 24.1(7.6-40.7) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \text { 27.8(12.4-43.1) } \end{gathered}$	$\begin{gathered} 35 \\ 28.6(12.8-44.3) \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ 47.5(43.3-60.6) \\ \hline \end{gathered}$	$\begin{gathered} 186 \\ \text { 33.3(26.5-40.2) } \\ \hline \end{gathered}$
	Female	$\begin{gathered} 136 \\ 41.9(33.5-50.3) \end{gathered}$	$\begin{gathered} 153 \\ 37.3(29.5-45.0) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ 36.0(28.8-43.1) \\ \hline \end{gathered}$	$\begin{gathered} 119 \\ 42.2(37.1-55.3) \\ \hline \end{gathered}$	$\begin{gathered} 151 \\ 64.9(57.2-72.6) \\ \hline \end{gathered}$	$\begin{gathered} 737 \\ 44.9(41.3-48.5) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 214 \\ 37.4(30.8-43.9) \\ \hline \end{gathered}$	$\begin{gathered} 154 \\ 33.8(26.2-41.3) \\ \hline \end{gathered}$	$\begin{gathered} 138 \\ 37.7(29.5-45.1) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ 31.9(22.3-41.5) \\ \hline \end{gathered}$	$\begin{gathered} 151 \\ 47.7(39.6-55.7) \end{gathered}$	$\begin{gathered} 751 \\ \text { 38.1(34.6-41.6) } \\ \hline \end{gathered}$
	Female	$\begin{gathered} 709 \\ \text { 58.0(54.3-61.6) } \\ \hline \end{gathered}$	$\begin{gathered} 537 \\ 43.4(39.2-47.6) \\ \hline \end{gathered}$	$\begin{gathered} 444 \\ 42.8(38.2-47.4) \\ \hline \end{gathered}$	$\begin{gathered} 289 \\ 43.9(38.2-49.7) \\ \hline \end{gathered}$	$\begin{gathered} 267 \\ \text { 67.2(56.3-68.0) } \\ \hline \end{gathered}$	

no vigorous activity and less than 3 days of physical activity per week) by province and age

Province	$25-34$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$35-44$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$45-54$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$55-64$ $\mathrm{~N}^{*}$ $\%(95 \% \mathrm{CI})$	$65+$ N^{*} $\%(95 \% \mathrm{CI})$	Overall N^{*} $\%(95 \% \mathrm{CI})$
Midlands	284	312	154	94	65	810
	$72.5(67.3-$	$70.4(64.2-$	$67.5(60.1-$	$73.4(64.3-$	$60.0(47.8-$	$70.1(67.0-$
	$77.8)$	$76.6)$	$75.0)$	$82.5)$	$72.2)$	$73.3)$
Mash	316	206	162	115	117	916
Central	$87.0(83.3-$	$71.8(65.7-$	$75.3(68.6-$	$76.5(68.7-$	$81.2(74.0-$	$79.5(76.9-$
	$90.8)$	$78.0)$	$82.0)$	$94.4)$	$88.4)$	$82.1)$
Mat South	162	182	213	154	209	920
	$90.1(85.5-$	$84.1(78.7-$	$85.9(81.2-$	$84.4(78.6-$	$91.9(88.1-$	$87.4(85.2-$
	$94.8)$	$89.4)$	$90.6)$	$90.2)$	$95.6)$	$89.5)$
		762	601	539	363	391
Total	$82.3(79.6-$	$75.0(71.6-$	$77.3(73.7-$	$79.1(74.5-$	$83.4(79.7-$	$79.3(77.8-$
	$85.0)$	$76.5)$	$80.9)$	$82.3)$	$82.1)$	$80.1)$

Overall the prevalence of physical inactivity was 79.3%. The prevalence of physical inactivity ranged from 60% to 92%, with Mat South reporting the highest prevalence throughout the age groups.

5.7.3:- Sedentary traveling (transportation)

A total of 3006 (97.6%) responded to this question. Generally females were more likely to report sedentary traveling in all the provinces, across all age groups and sexes. Infact females were twice as much more likely to report sedentary traveling as compared to males and there was an increasing trend with age.

Table 5.5d: - Percentage of respondents reporting sedentary (walking or pedal cycling for less than 10 minutes)
Traveling by province, sex and age group

Province	Sex	$\begin{gathered} \hline 25-34 \\ \mathrm{~N}^{*} \\ \%^{* *}(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35-44 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 45-54 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Overall } \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
Midlands	Male	$\begin{gathered} 129 \\ 9.3(4.2-14.4) \end{gathered}$	$\begin{gathered} 84 \\ \text { 11.9(4.8-19.7) } \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 7.6(1.0-14.1) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \text { 8.3(0.0-17.8 } \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ 6.1(0.0-13.1) \\ \hline \end{gathered}$	$\begin{gathered} 364 \\ 9.1(6.1-12.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline 316 \\ 13.7(9.8-17.4) \\ \hline \end{gathered}$	$\begin{gathered} 218 \\ 13.8(9.2-18.4) \end{gathered}$	$\begin{gathered} 142 \\ 7.7(3.3-12.2) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ 14.5(6.4-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 23.1(10.1-36.4) \end{gathered}$	$\begin{gathered} 794 \\ 13.2(10.9-15.6) \end{gathered}$
Mash Central	Male	$\begin{gathered} 60 \\ 10.0(2.1-17.8) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ 22.0(8.7-35.2) \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 10.8(0.3-21.3) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 13.0(0.0-27.9) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 9.3(0.3-18.3) \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 12.7(8.1-17.4) \end{gathered}$
	Female	$\begin{gathered} 257 \\ 16.0(11.4-20.5) \end{gathered}$	$\begin{gathered} 166 \\ 16.3(10.6-21.9) \end{gathered}$	$\begin{gathered} 125 \\ 19.2(12.2-26.2) \end{gathered}$	$\begin{gathered} 94 \\ 22.3(13.8-30.9) \end{gathered}$	$\begin{gathered} 74 \\ 25.7(15.5-35.9) \end{gathered}$	$\begin{gathered} 716 \\ \text { 18.4(15.6-21.3) } \end{gathered}$
Mat South	Male	$\begin{gathered} 27 \\ 11.1(0.0-23.8) \end{gathered}$	$\begin{gathered} 29 \\ 10.3(0.0-22.1) \end{gathered}$	$\begin{gathered} 38 \\ 18.4(5.5-31.3) \end{gathered}$	$\begin{gathered} 35 \\ 20.0(6.1-33.9) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ 37.7(25.2-50.2) \end{gathered}$	$\begin{gathered} 190 \\ 22.6(16.6-28.6) \end{gathered}$
	Female	$\begin{gathered} 136 \\ 33.1(25.1-41.1) \end{gathered}$	$\begin{gathered} 152 \\ 30.3(22.9-37.6) \end{gathered}$	$\begin{gathered} 178 \\ 32.0(25.1-38.9) \end{gathered}$	$\begin{gathered} 119 \\ \text { 27.7(19.6-35.9) } \end{gathered}$	$\begin{gathered} 153 \\ 52.3(44.3-60.3) \end{gathered}$	$\begin{gathered} 738 \\ 35.4(31.9-38.8) \end{gathered}$
Total	Male	$\begin{gathered} 216 \\ 9.7(5.7-13.7) \end{gathered}$	$\begin{gathered} 154 \\ 14.3(8.7-19.9) \end{gathered}$	$\begin{gathered} 141 \\ 11.3(6.0-16.6) \end{gathered}$	$\begin{gathered} 94 \\ 13.8(6.7-20.9) \end{gathered}$	$\begin{gathered} 153 \\ 19.6(13.2-26.0) \end{gathered}$	$\begin{gathered} 758 \\ 13.5(11.0-15.9) \end{gathered}$
	Female	$\begin{gathered} 708 \\ \text { 18.2(15.4-21.1) } \end{gathered}$	$\begin{gathered} 536 \\ 19.2(15.9-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 445 \\ 20.7(16.9-24.5) \\ \hline \end{gathered}$	$\begin{gathered} 289 \\ 22.5(17.6-27.3) \end{gathered}$	$\begin{gathered} 270 \\ 40.4(34.5-46.3) \end{gathered}$	$\begin{gathered} 2248 \\ 22.2(20.4-23.9) \end{gathered}$

** Percent inactive or reporting sedentary traveling

5.7.4:- Sedentary leisure time

Sedentary leisure time is summarized in Table 5.5d, as a combination of either recreation, sport or leisure time involving mostly sitting or reclining or standing with no physical activity lasting more than 10 minutes at a time or no vigorous activity such as running or strenuous
sports, weight lifting for at least 10 minutes at a time. The proportion of respondents reporting sedentary leisure time ranged from 91% to 99%. Overall 96.7% of the respondents reported sedentary leisure time.

Table 5.5e: Percentage of respondents reporting sedentary leisure time by province and age group

Province	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 35-44 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline 200 \end{gathered}$	$\begin{gathered} \hline 45-54 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 55-64 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline 111 \end{gathered}$	$\begin{gathered} 65+ \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \mathbf{N}^{*} \\ \%(95 \% \mathbf{C I}) \end{gathered}$
Midlands	$\begin{gathered} 444 \\ 97.7(96.4-99.1) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 95.0(92.5-97.5) \end{gathered}$	$\begin{gathered} 208 \\ 95.7(92.9-98.5) \end{gathered}$	$\begin{gathered} 111 \\ 97.3(94.2-100) \end{gathered}$	$\begin{gathered} 92 \\ 98.9(96.8-101.1) \\ \hline \end{gathered}$	$\begin{gathered} 1155 \\ 96.7(95.7-97.7) \\ \hline \end{gathered}$
Mash Central	$\begin{gathered} 316 \\ \text { 99.4(98.8-102.2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 204 \\ 98.0(96.1-100.0) \\ \hline \end{gathered}$	$\begin{gathered} 159 \\ 97.8(95.0-100.0) \\ \hline \end{gathered}$	$\begin{gathered} 117 \\ \text { 98.3(95.9-100.7) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 113 \\ \text { 99.1(97.4-100.9) } \\ \hline \end{gathered}$	$\begin{gathered} 909 \\ \text { 98.6(97.8-99.3) } \\ \hline \end{gathered}$
Mat South	$\begin{gathered} 160 \\ 97.5(95.1-99.9) \\ \hline \end{gathered}$	$\begin{gathered} 179 \\ 91.6(87.5-95.7) \end{gathered}$	$\begin{gathered} \hline 207 \\ 94.7(91.6-97.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 146 \\ 94.5(90.8-98.3) \\ \hline \end{gathered}$	$\begin{gathered} 206 \\ 96.1(93.5-98.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 898 \\ 94.9(93.4-96.3) \\ \hline \end{gathered}$
Total	$\begin{gathered} 920 \\ 98.3(97.4-99.1) \\ \hline \end{gathered}$	$\begin{gathered} 683 \\ 95.0(93.4-96.7) \end{gathered}$	$\begin{gathered} 574 \\ 95.8(94.2-97.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 374 \\ 96.5(94.7-98.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 411 \\ 97.6(96.1-99.1) \\ \hline \end{gathered}$	$\begin{gathered} 2962 \\ 96.7(96.1-97.4) \end{gathered}$

areas of physical activity (work, transportation and leisure). On work differences across provinces were noted in Mat South province, this is due to the fact that there were more population from the rural areas with sedentary type of jobs. On transportation it is worth noting that females reported a higher sedentary traveling lifestyle as compared to males. Since most females were employed as housewives, they were less likely to cycle or pedal within the home. Organized sport and other leisure activities in the manner inquired in the questionnaire is not undertaken by the communities we surveyed as a habit, hence this item drew response which indicated a high level of inactivity during leisure time.

5.8.0. History of Hypertension

The prevalence of reported hypertension was estimated at 17.9%. Overall the prevalence of hypertension increased with age group from 7.9% in the youngest age group to 30.9% in the 65 years and older age group. After adjusting for age the prevalence of reported hypertension was found to be higher among females as compared to males across all the provinces. With respect to different provinces, highest prevalence was found in Matebeleland South (20.2\%) and the lowest in Mashonaland Central 15.1\%. Age adjusted reported hypertension by provinces showed Midlands to have a higher prevalence, see Figure 5.3.

5.8.1: Discussion of hypertension

There was a higher proportion of respondents from the urban communities in Midlands which could have given them a better access to diagnosis of hypertension compared to rural communities and hence high reported prevalence of hypertension.

Table 5.6:- Reported Prevalence of hypertension by province, age group and gender

	Midlands $\mathbf{N}=\mathbf{1 1 5 5}$		Mash Central $\mathbf{N}=\mathbf{9 2 0}$		Mat South $\mathbf{N}=\mathbf{9 2 8}$		Total $\mathbf{N}=\mathbf{3 0 0 3}$	
Age group	\mathbf{N}^{*}	$\mathbf{\%}$	\mathbf{N}^{*}	$\mathbf{\%}$	\mathbf{N}^{*}	$\mathbf{\%}$	\mathbf{N}^{*}	$\mathbf{\%}$
$\mathbf{2 5 - 3 4}$	444	8.1	317	7.9	163	7.4	924	7.9
$35-44$	299	16.7	207	11.1	182	15.4	688	14.6
$45-54$	209	27.8	162	16.1	214	18.7	585	21.2
$55-64$	111	34.2	117	23.1	154	28.6	282	28.5
$65+$	92	34.6	117	34.5	215	29.3	424	30.9
Overall	1155	18.4	920	15.1	928	20.2	3003	17.9
Sex								
Males	363	11.9	204	9.8	189	13.2	756	11.6
Females	792	21.3	716	16.6	739	21.9	2247	20.0

Total number within age group or sex

Figure 5.4: Reported prevalence of hypertension by province and age group

5.8.2: History of Diabetes mellitus

Formatted

Reported prevalence of diabetes was estimated at 2.4%, with no difference across the three provinces. Age specific prevalence showed an increase in trends in all the provinces across the age groups with the exception of Mashonaland Central and Matebeleland South, which dropped drastically after 55-64 year age group. Sex adjusted prevalences showed that females were more likely to report history of diabetes when compared to males in all the provinces.

Table 5.7: Reported prevalence of diabetes by province, age group and gender

	Midlands $\mathbf{N}=\mathbf{1 1 4 6}$		Mash Central $\mathbf{N}=\mathbf{9 2 0}$		Mat South $\mathbf{N}=\mathbf{9 3 1}$		Total $\mathbf{N}=2997$	
Age group	\mathbf{N}^{*}	$\mathbf{\%}$	\mathbf{N}^{*}	$\mathbf{9}$	\mathbf{N}^{*}	$\mathbf{\%}$	\mathbf{N}^{*}	$\mathbf{\%}$
25-34	437	0.2	317	0.3	164	1.2	918	0.4
$35-44$	298	2.7	207	2.4	182	1.7	687	2.3
$45-54$	209	2.9	162	3.1	216	1.9	587	2.6
$55-64$	111	3.6	117	6.8	154	6.5	382	5.8
$65+$	91	6.6	117	0.9	215	3.3	423	3.3
Overall	1146	2.2	920	2.17	931	2.8	2997	2.4
Sex								
\quad Males	367	1.9	207	1.5	191	6.3	765	2.9
Females	807	2.5	737	2.4	756	2.0	2300	2.3

Total number within age group or sex

Figure 5.5:- Reported prevalence of diabetes mellitus

5.9.0: Physical measurements (STEP 2 OF STEPS)

| 5.9.1: Body Mass Index (BMI)

The mean BMI was 21.7% for males and 25.1% for females across all the three provinces. The mean BMI was within normal range, except for female in Midlands, who were slightly overweight
,Table 5 8a: Mean BMI by province, age group and gender

Province	Sex	$25-34$ N^{*} Mean(95\%CI)	$35-44$ N^{*} Mean(95\%CI)	$45-54$ N^{*} Mean(95\%CI)	$55-64$ N^{*} Mean(95\%CI)	$65+$ \mathbf{N}^{*} Mean(95\%CI)	Overall N^{*} Mean $(95 \% \mathrm{CI})$
Midlands	Male	$\begin{gathered} 76 \\ 21.9(21.1-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 22.8(21.7-23.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ 23.6(22.3-24.8) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 22.4(20.8-24.0) \end{gathered}$	$\begin{gathered} 44 \\ 21.8(20.7-22.9) \\ \hline \end{gathered}$	$\begin{gathered} 249 \\ 22.4(21.9-22.9) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 163 \\ 25.1(24.3-25.8) \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 27.1(26.2-28.0) \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ \text { 28.2(27.2-29.3) } \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \text { 27.6(26.2-29.0) } \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ 25.2(23.5-26.9) \\ \hline \end{gathered}$	$\begin{gathered} 549 \\ 26.5(26.1-27.0) \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 33 \\ 20.2(19.7-20.8) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 20.0(18.7-21.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ 21.8(20.2-23.3) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 21.8(19.7-24.0) \end{gathered}$	$\begin{gathered} 35 \\ 21.7(20.6-22.8) \\ \hline \end{gathered}$	$\begin{gathered} 148 \\ 21.1(20.5-21.7) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 177 \\ 24.2(23.5-24.9) \\ \hline \end{gathered}$	$\begin{gathered} 142 \\ 24.7(23.9-25.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ 25.5(24.4-26.6) \\ \hline \end{gathered}$	$\begin{gathered} 87 \\ \text { 24.3(23.1-25.4) } \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 22.2(21.1-23.2) \\ \hline \end{gathered}$	$\begin{gathered} 597 \\ 24.3(23.9-24.7) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 24 \\ 21.7(20.3-23.1) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 21.3(20.1-22.5) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 20.9(19.7-22.1) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 22.3(20.6-23.9) \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ 20.7(19.7-21.7) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ 21.2(20.7-21.8) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 125 \\ 23.7(22.9-24.5) \\ \hline \end{gathered}$	$\begin{gathered} 144 \\ 24.8(24.0-25.6) \\ \hline \end{gathered}$	$\begin{gathered} 168 \\ 25.9(24.9-26.8) \\ \hline \end{gathered}$	$\begin{gathered} 116 \\ 25.5(24.5-26.5) \\ \hline \end{gathered}$	$\begin{gathered} 147 \\ 23.9(23.0-24.7) \\ \hline \end{gathered}$	$\begin{gathered} 715 \\ 24.7(24.3-25.1) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 133 \\ 21.4(20.9-22.0) \\ \hline \end{gathered}$	$\begin{gathered} 97 \\ 21.7(21.0-22.4) \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 22.3(21.5-23.1) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ 22.2(21.2-23.2) \\ \hline \end{gathered}$	$\begin{gathered} 138 \\ 21.3(20.7-21.9) \\ \hline \end{gathered}$	$\begin{gathered} 575 \\ 21.7(21.4-22.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 465 \\ 24.4(23.9-24.8) \\ \hline \end{gathered}$	$\begin{gathered} 436 \\ 25.6(25.1-26.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 384 \\ 26.4(25.8-27.0) \\ \hline \end{gathered}$	$\begin{gathered} 271 \\ 25.6(25.0-26.3) \\ \hline \end{gathered}$	$\begin{gathered} 252 \\ 23.6(23.0-24.3) \\ \hline \end{gathered}$	$\begin{gathered} 1861 \\ 25.1(24.9-25.4) \\ \hline \end{gathered}$

N^{*} Indicates total number within age group p and sex

Table 5.8b: Overall Distribution of respondents on Overweight and obesity stratified by sex and age group

Province	Category of relative weight	$\begin{gathered} 25-34 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 35-44 \\ \% \end{gathered}$	$\begin{gathered} 45-54 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \% \end{gathered}$	$\begin{gathered} 65+ \\ \% \\ \hline \end{gathered}$	Overall \%
		$\mathrm{N}=133$	N=97	$\mathrm{N}=120$	$\mathrm{N}=81$	N=138	N=569
Males	Underweight (<18.5)	8.3	12.4	16.7	21.0	20.3	15.5
	Normal (18.5-24.9)	82.0	65.0	58.3	59.3	63.0	66.3
	Grade$1 \quad$ overweight $(25.0-29.9)$	6.8	21.7	20.0	12.4	13.0	14.4
	Grade 2 overweight (30.0-39.9)	3.0	1.0	5.0	7.4	3.6	3.9
	Obesity (> 40.0)	0.0	0.0	0.0	0.0	0.0	0.0
		$\mathrm{N}=465$	$\mathrm{N}=436$	$\mathrm{N}=384$	$\mathrm{N}=271$	N=252	$\mathrm{N}=1808$
Females	Underweight (<18.5)	7.3	4.4	6.0	6.6	12.3	6.9
	Normal (18.5-24.9)	55.9	49.8	40.0	46.5	56.4	49.8
	Grade1 $(25.0-29.9)$	22.4	25.9	26.8	23.3	19.4	23.9
	Grade 2 overweight (30.0-39.9)	13.8	18.8	24.5	22.5	11.1	18.2
	Obesity (> 40.0)	0.7	1.2	2.3	1.1	0.8	1.2

5.9.2: Overall distribution of overweight and obesity

Overall, the prevalence of Grade 1 overweight was estimated to be 14.5% in the males and 23.9% among females. Of note is the fact that Grade 2 overweight in females (18.2\%) was six times that of males (3.9\%). Age -specific prevalence showed that overweight peaked among males at 35-44 year age group (21.7\%), while in female it peaked at 45 to 54 year age group (26.8\%). Interesting to note is the fact that no obesity prevalence was noted in males, while 1.2% prevalence was noted among females.

5.9.3: Overweight and obesity among males

The definition of overweight and obesity were based on body mass index (BMI) greater or equal to 25 and greater than 40 respectively. Overall the grade 1 overweight was $19.1 \%, 8.9 \%$ and 11.3% for Midlands, Mashonaland Central and Matebeleland South provinces respectively. Age specific prevalence of overweight peaked at the age group of 35-44 in Midlands, 45-54 in Mashonaland Central and 55-64 in Matebeleland South province. Grade 2 overweight, was more prevalent in the age group 55 to 64 in Mashonaland Central and Matebeleland South provinces, while in Midlands it was highest in the 45-54 age group. Of note is the fact that none of the three provinces reported obesity.

Table 5.8.c: Distribution of male respondents on Overweight and obesity stratified by province and age group

Province	Category of Relative Weight	$\begin{gathered} 25-34 \\ \% \end{gathered}$	$\begin{gathered} 35-44 \\ \% \end{gathered}$	$\begin{gathered} 45-54 \\ \% \end{gathered}$	$\begin{gathered} 55-64 \\ \% \end{gathered}$	$\begin{gathered} 65+ \\ \% \end{gathered}$	Overall \%
		N=76	$\mathrm{N}=46$	N=52	N=28	N=44	$\mathrm{N}=246$
Midlands	Underweight (<18.5)	4.0	4.4	7.7	21.4	15.9	8.9
	Normal (18.5-24.9)	82.9	60.9	55.8	57.1	65.9	67.1
	Grade $\begin{gathered}1 \text { overweight } \\ (25.0-29.9)\end{gathered}$	9.2	32.6	30.8	17.9	13.6	19.9
	Grade 2 overweight (30.0-39.9)	4.0	2.2	5.8	3.6	4.6	4.1
	Obesity (> 40.0)	0.0	0.0	0.0	0.0	0.0	0.0
		$\mathrm{N}=33$	$\mathrm{N}=23$	$\mathrm{N}=35$	$\mathrm{N}=20$	$\mathrm{N}=35$	$\mathrm{N}=146$
Mash Central	Underweight (<18.5)	15.2	21.8	25.7	25.0	8.6	18.5
	Normal (18.5-24.9)	84.9	69.6	51.4	65.0	77.1	69.9
	Grade $\begin{gathered}1 \\ (25.0-29.9)\end{gathered}$	0.0	8.7	20.0	0.0	11.4	8.9
	Grade 2 overweight (30.0-39.9)	0.0	0.0	2.9	10.0	2.9	2.7
	Obesity (> 40.0)	0.0	0.0	0.0	0.0	0.0	0.0
		$\mathrm{N}=24$	$\mathrm{N}=28$	N=33	N=33	N=59	N=177
Mat South	Underweight (<18.5)	12.5	17.9	21.1	18.2	30.5	22.0
	Normal (18.5-24.9)	75.0	67.9	69.7	57.6	52.5	62.2
	Grade1 $(25.0-29.9)$	8.3	14.3	3.0	15.2	13.6	11.3
	Grade 2 overweight (30.0-39.9)	4.2	0.0	6.1	9.1	3.4	4.5
	Obesity (> 40.0)	0.0	0.0	0.0	0.0	0.0	0.0

Table 5.8d: Distribution of female respondents on Overweight and obesity stratified by province and age group

Province	Category of Relative Weight	$\begin{gathered} 25-34 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { 45-54 } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 55-64 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Overall } \\ \% \\ \hline \end{gathered}$
		$\mathrm{N}=163$	$\mathrm{N}=150$	$\mathrm{N}=110$	$\mathrm{N}=68$	N=39	$\mathrm{N}=530$
Midlands	Underweight (<18.5)	6.8	2.7	1.8	1.5	7.7	4.0
	Normal (18.5-24.9)	51.5	33.3	32.7	36.8	46.2	41.3
	Grade1 overweight $(25.0-29.9)$	22.7	29.3	26.4	25.0	25.6	25.9
	Grade 2 overweight (30.0-39.9)	18.4	28.0	37.3	36.8	20.5	27.6
	Obesity (> 40.0)	0.6	2.7	1.8	0.0	0.0	1.3
Mash Central		$\mathrm{N}=177$	$\mathrm{N}=142$	$\mathrm{N}=106$	$\mathrm{N}=87$	$\mathrm{N}=66$	$\mathrm{N}=578$
	Underweight (<18.5)	7.3	4.2	8.5	12.6	15.2	8.5
	Normal (18.5-24.9)	55.9	57.0	46.2	49.4	60.6	54.0
	Grade$1 \quad$ overweight $(25.0-29.9)$	25.4	25.4	26.4	19.5	18.2	23.9
	Grade 2 overweight (30.0-39.9)	10.7	12.7	16.0	18.4	6.1	12.8
	Obesity (> 40.0)	0.6	0.7	2.8	0.0	0.0	0.9
		$\mathrm{N}=125$	$\mathrm{N}=144$	N=168	$\mathrm{N}=116$	$\mathrm{N}=147$	$\mathrm{N}=700$
Mat South	Underweight (<18.5)	8.0	6.3	7.1	5.2	12.2	7.9
	Normal (18.5-24.9)	61.6	55.6	41.7	50.0	57.1	52.7
	Grade$1 \quad$ overweight $(25.0-29.9)$	17.6	22.9	27.4	25.0	18.4	22.4
	Grade 2 overweight (30.0-39.9)	12.0	15.3	21.4	17.2	10.9	15.6
	Obesity (> 40.0)	0.8	0.0	2.4	2.6	1.4	1.4

5.9.4: Overweight and obesity among females

Formatted
The definition of overweight and obesity were based on body mass index (BMI) greater or equal to 25 and greater than 40 respectively.
Province specific prevalence of grade 1 overweight stood at $25.9 \%, 23.9 \%$ and 22.9% in Midlands, Mashonaland Central and Matebeleland South provinces respectively. Age specific prevalence of overweight peaked at the age group of 35-44 in Midlands, 45-54 in Mashonaland Central and Matebeleland South province. Grade 2 overweight was more prevalent in the age group 55 to 64 in Mashonaland Central, 45-54 in Matebeleland South provinces and Midlands. Obesity was noted in all the three provinces.

Table 5.9: Central Obesity (WHR) by province, by age group and gender

Province	Sex	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \% \end{gathered}$	$\begin{gathered} 35-44 \\ \mathbf{N}^{*} \\ \% \end{gathered}$	$\begin{gathered} \text { 45-54 } \\ \mathbf{N}^{*} \\ \% \end{gathered}$	$\begin{gathered} \text { 55-64 } \\ \mathbf{N}^{*} \\ \% \end{gathered}$	$\begin{aligned} & \text { 65+ } \\ & \mathbf{N}^{*} \\ & \% \end{aligned}$	$\begin{gathered} \text { Overall } \\ \mathbf{N}^{*} \\ \%(95 \% \mathbf{C I}) \end{gathered}$
Midlands	Male (>0.95)	76	45	52	29	44	246
		6.6	11.1	9.6	6.9	13.6	9.4
	Female (>0.85)	154	151	112	69	39	525
		19.5	24.5	33.0	30.4	30.7	26.1
Mash Central	Male (>0.95)	33	24	35	20	35	147
		12.1	12.5	8.6	20.0	8.6	11.6
	Female (>0.85)	160	139	108	90	66	563
		10.0	13.0	20.4	22.2	25.8	16.5
Mat South	Male (>0.95)	22	28	31	35	58	174
		0.0	7.1	6.5	11.4	10.3	8.1
	Female (>0.85)	117	139	167	115	151	689
		16.2	27.3	22.2	30.4	37.8	27.0
Total	Male (>0.95)	131	97	118	84	137	567
		6.9	10.3	8.5	11.9	11.0	9.5
	Female (>0.85)	431	429	387	274	256	1777
		15.1	21.7	24.8	27.7	33.6	23.4

5.10.0: Waist Hip Ratio (WHR

Overall the prevalence of central obesity as defined by WHR was 23.4% for females and 9.5% for males. In all the provinces central obesity was more prevalent in females as compared to males across all age groups.

Table 5.10a: Mean systolic blood pressure by sex, age group and province

Province	Sex	$\begin{gathered} 25-34 \\ \mathbf{N}^{*} \\ \text { Mean(95\%CI) } \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ N^{*} \\ \text { Mean(95\%CI) } \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ N^{*} \\ \text { Mean(95\%CI) } \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ N^{*} \\ \text { Mean(95\%CI) } \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \mathbf{N}^{*} \\ \text { Mean(95\%CI) } \end{gathered}$	Overall N^{*} Mean (95\%CI)
Midlands	Male	$\begin{gathered} 77 \\ 118.3(115.5-121.2) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 124.7(120.0-129.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ 130.2(123.9-136.7) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 139.7(127.4-151.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ 150.8(141.7-159.8) \\ \hline \end{gathered}$	$\begin{gathered} 249 \\ 130.4(127.3-133.5) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline 164 \\ 118.2(115.9-120.4) \\ \hline \end{gathered}$	$\begin{gathered} 152 \\ 129.1(125.9-132.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 110 \\ 139.5(134.9-144.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ 150.6(142.8-158.5) \end{gathered}$	$\begin{gathered} \hline 39 \\ 155.3(146.3-164.2) \end{gathered}$	$\begin{gathered} 534 \\ 132.6(130.4-134.7) \end{gathered}$
Mash Central	Male	$\begin{gathered} 33 \\ 125.4(121.0-129.8) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 120.3(114.3-126.4)) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { 127.6(118.4-136.8) } \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 145.7(132.6-158.8) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 152.6(144.5-160.8) \\ \hline \end{gathered}$	$\begin{gathered} 147 \\ 134.3(130.3-138.4) \end{gathered}$
	Female	$\begin{gathered} 178 \\ 119.3(117.1-121.6) \end{gathered}$	$\begin{gathered} \hline 144 \\ 126.7(122.9-130.5) \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ 141.4(136.9-145.8) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ 150.5(144.6-156.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 66 \\ 152.4(146.3-158.6) \\ \hline \end{gathered}$	$\begin{gathered} 586 \\ 133.7(131.6-135.8) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 24 \\ 117.7(113.0-122.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ 120.3(111.1-129.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ 123.5(113.7-133.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ 133.5(123.6-134.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 59 \\ 139.8(131.6-148.0) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ \text { 129.6(125.4-133.7) } \\ \hline \end{gathered}$
	Female	$\begin{gathered} 125 \\ 113.5(110.9-116.1) \end{gathered}$	$\begin{gathered} 145 \\ 122.6(118.8-126.3) \\ \hline \end{gathered}$	$\begin{gathered} 170 \\ 132.7(128.2-137.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 116 \\ 145.7(140.2-151.2) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ 151.0(146.1-155.9) \\ \hline \end{gathered}$	$\begin{gathered} 709 \\ 133.3(131.1-135.5) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} \hline 134 \\ 120.0(117.8-122.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 98 \\ 122.4(118.8-126.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 119 \\ \text { 127.7(123.1-132.3) } \end{gathered}$	$\begin{gathered} \hline 84 \\ 138.5(132.0-145.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 139 \\ 146.6(141.6-151.6) \\ \hline \end{gathered}$	$\begin{gathered} 574 \\ 131.1(129.0-133.30) \end{gathered}$
	Female	$\begin{gathered} 467 \\ 117.4(116.0-118.7) \end{gathered}$	$\begin{gathered} 441 \\ 126.2(124.1-128.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 388 \\ 137.0(134.3-139.7) \end{gathered}$	$\begin{gathered} 275 \\ 148.5(144.9-152.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 258 \\ 152.0(148.5-155.3) \end{gathered}$	$\begin{gathered} 1829 \\ 133.2(132.0-134.50) \end{gathered}$

N* Indicates total number within age group and sex

5.11.0: Blood pressure

5.11.1: Systolic blood pressure

Overall the mean systolic blood pressure rises with age from a mean in males of 120 mmHg to 146.6 mmHg and in females from 117 mmHg to 152 mmHg . This pattern was observed across all the three provinces, see Table 5.10a.

Table 5.10b: Mean diastolic blood pressure by sex, age group and province

Province	Sex	$25-34$ N* * Mean(95\%CI)	$\begin{gathered} 35-44 \\ N^{*} \\ \text { Mean95\%CI) } \end{gathered}$	$45-54$ \mathbf{N}^{*} Mean95\%CI)	$55-64$ \mathbf{N}^{*} Mean95\%CI)	65+ \mathbf{N}^{*} Mean95\%CI)	Overall N^{*} Mean 95\%CI)
Midlands	Male	$\begin{gathered} 77 \\ 74.7(72.4-77.0) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 80.0(75.7-84.4) \end{gathered}$	$\begin{gathered} 52 \\ 81.3(77.5-85.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ 82.6(75.5-89.7) \end{gathered}$	$\begin{gathered} \hline 45 \\ 88.2(83.3-93.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 249 \\ 80.4(78.6-82.3) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 164 \\ 74.7(72.5-76.8) \\ \hline \end{gathered}$	$\begin{gathered} 152 \\ \text { 81.7(79.7-83.7) } \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ 86.5(84.0-89.0) \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \text { 88.3(84.5-92.1) } \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ 90.0(86.0-94.0) \\ \hline \end{gathered}$	$\begin{gathered} 543 \\ \text { 82.0(80.7-83.2) } \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 33 \\ 81.4(77.4-85.4) \end{gathered}$	$\begin{gathered} 24 \\ 78.3(73.8-82.7) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 82.7(78.2-87.3) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 87.6(80.9-94.2) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \text { 89.9(85.9-93.9) } \end{gathered}$	$\begin{gathered} \hline 147 \\ 84.1(82.0-86.1) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 178 \\ 79.9(79.3-81.5) \\ \hline \end{gathered}$	$\begin{gathered} 144 \\ \hline 83.0(80.6-85.3) \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ 90.4(87.7-93.1) \end{gathered}$	$\begin{gathered} 90 \\ 90.8(87.8-93.7) \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { 92.0(89.1-95.0) } \\ \hline \end{gathered}$	$\begin{gathered} 586 \\ \text { 85.6(84.5-86.7) } \end{gathered}$
Mat South	Male	$\begin{gathered} 24 \\ 73.1(67.4-78.7) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 77.5(72.5-82.5) \end{gathered}$	$\begin{gathered} 32 \\ \text { 83.0(74.7-91.4) } \end{gathered}$	$\begin{gathered} 35 \\ 84.9(77.8-92.1) \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ 83.5(78.1-88.9) \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ 81.4(78.5-84.3) \end{gathered}$
	Female	$\begin{gathered} 125 \\ 74.4(72.7-76.2) \\ \hline \end{gathered}$	$\begin{gathered} 145 \\ \text { 81.4(78.8-84.0) } \\ \hline \end{gathered}$	$\begin{gathered} 170 \\ \text { 85.9(83.2-88.5) } \\ \hline \end{gathered}$	$\begin{gathered} 116 \\ 91.5(88.2-94.7) \\ \hline \end{gathered}$	$\begin{gathered} 153 \\ \text { 85.6(83.2-88.1) } \\ \hline \end{gathered}$	$\begin{gathered} 709 \\ 83.8(82.6-85.0) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 134 \\ 76.1(74.1-78.0) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ \text { 78.9(76.2-81.5) } \\ \hline \end{gathered}$	$\begin{gathered} 119 \\ 82.2(79.2-85.2) \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ 84.8(80.7-88.8) \\ \hline \end{gathered}$	$\begin{gathered} 139 \\ 86.7(83.7-89.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 574 \\ 81.7(80.3-83.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 467 \\ 76.6(75.5-77.7) \end{gathered}$	$\begin{gathered} 441 \\ 82.0(80.7-83.3) \\ \hline \end{gathered}$	$\begin{gathered} 388 \\ 87.3(85.8-88.8) \\ \hline \end{gathered}$	$\begin{gathered} 275 \\ 90.5(88.5-92.4) \end{gathered}$	$\begin{gathered} 258 \\ \hline 87.8(86.2-89.7) \\ \hline \end{gathered}$	$\begin{gathered} 1829 \\ 83.9(83.2-84.5) \\ \hline \end{gathered}$

5.11.2: Diastolic blood pressure

Overall the mean diastolic blood pressure was 81.7 mmHg for males and 83.9 mmHg for females. Generally the mean diastolic blood pressure increased with age in both sexes. The pattern of higher mean diastolic blood pressure in females was maintained across provinces and in all age groups from the 35-44 year age group and above.

Table 5.10c: Prevalence of hypertension among females by age group and Province.

Province	Category of hypertension	$\begin{gathered} 25-34 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \% \end{gathered}$	$\begin{gathered} 45-54 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 65+ \\ \% \\ \hline \end{gathered}$	Overall $\%$
		$\mathrm{N}=164$	N=152	$\mathrm{N}=110$	$\mathrm{N}=69$	$\mathrm{N}=39$	$\mathrm{N}=534$
Midlands	Level A hypertension (SBP>160\& DBP>95)	1.8(0.4-5.3)	8.6(4.6-16.2)	18.2(11.5-26.7)	27.5(17.5-39.6)	35.9(21.2-52.8)	12.9(10.1-15.8)
	Level B hypertension $(S B P>140 \& D B P>90)$	6.1(3.0-10.9)	30.3(23.1-38.2)	43.6(34.2-53.4)	50.7(38.4-63.4)	61.5(44.6-76.6)	30.5(26.6-34.4)
	Level C hypertension (SBP>170 \& DBP>100)	1.8(0.4-5.3)	5.3(2.3-10.1)	10.9(5.8-18.3)	26.1(16.3-38.1)	25.6(38.0-42.1)	9.6(7.0-12.1)
	Severe hypertension (SBP>180 \& DBP>110)	0.6(0.0-3.4)	1.3(0.1-4.7)	4.5(1.5-10.3)	13.0(6.1-23.3)	7.7(1.6-20.9)	3.7(2.1-5.4)
		$\mathrm{N}=178$	$\mathrm{N}=144$	$\mathrm{N}=108$	$\mathrm{N}=90$	$\mathrm{N}=66$	$\mathrm{N}=586$
Mash Central	Level A hypertension (SBP>160\& DBP>95)	1.7(0.3-4.8)	7.6(3.9-13.3)	19.4(12.5-28.2)	27.8(18.9-38.2)	30.3(19.6-42.9)	13.7(10.9-16.4)
	Level B hypertension $(S B P>140 \& D B P>90)$	6.7(3.5-11.5)	20.8(14.5-28.4)	49.1(39.3-58.9)	51.1(40.3-61.8)	54.5(41.8-66.9)	30.2(26.5-33.9)
	Level C hypertension (SBP>170 \& DBP>100)	1.1(0.1-4.0)	4.9(2.0-9.8)	11.1(5.9-18.6)	18.9(11.4-28.5)	15.2(7.5-26.1)	8.2(6.0-10.4)
	Severe hypertension $(S B P>180 \& D B P>110)$	0.6(0.0-3.1)	2.8(0.8-7.0)	6.5(2.6-12.9)	6.7(2.5-13.9)	4.5(0.9-12.7)	3.6(2.1-5.1)
		$\mathrm{N}=125$	$\mathrm{N}=145$	$\mathrm{N}=170$	$\mathrm{N}=116$	$\mathrm{N}=153$	$\mathrm{N}=709$
Mat South	Level A hypertension (SBP>160\& DBP>95)	0.8(0.0-4.4)	7.6(3.8-13.2)	14.7(9.7-20.9)	25.0(17.4-33.9)	19.0(13.1-26.1)	13.4(10.9-15.9)
	Level B hypertension $(S B P>140 \& D B P>90)$	2.4(0.5-6.9)	16.6(10.9-23.6)	27.6(21.1-35.0)	47.4(38.1-56.9)	40.5(32.7-48.7)	26.9(23.7-30.2)
	$\begin{aligned} & \text { Level C hypertension } \\ & \text { (SBP>170 \& DBP>100) } \end{aligned}$	0.8(0.0-4.4)	4.1(1.5-8.8)	10.0(5.9-15.5)	18.1(11.6-26.3)	13.1(8.2-19.5)	9.2(7.0-11.3)
	$\begin{aligned} & \text { Severe hypertension } \\ & \text { (SBP>180 \& DBP>110) } \end{aligned}$	0.0(0.0-2.9)	2.8(0.8-6.9)	5.9(2.9-10.6)	10.3(5.5-17.4)	3.9(1.5-8.4)	4.5(3.0-6.0)
		$\mathrm{N}=467$	$\mathrm{N}=441$	$\mathrm{N}=338$	$\mathrm{N}=275$	$\mathrm{N}=258$	$\mathrm{N}=1829$
Total	Level A hypertension (SBP>160\& DBP>95)	1.5(0.6-3.1)	7.9(5.6-10.9)	17.0(13.4-21.1)	26.5(21.4-32.2)	24.4(19.3-30.1)	13.3(11.8-14.9)
	Level B hypertension $(S B P>140 \& D B P>90)$	5.4(3.5-7.8)	22.7(18.8-26.9)	38.1933.3-43.2)	49.5(43.4-55.5)	47.3(41.1-53.6)	29.0(27.0-31.1)
	Level C hypertension (SBP>170 \& DBP>100)	1.3(0.5-2.8)	4.8(3.0-7.2)	10.6(7.7-14.1)	20.4(15.8-25.6)	15.5(11.3-20.5)	9.0(7.7-10.3)
	Severe hypertension (SBP>180 \& DBP>110)	0.4(0.1-1.5)	2.3(1.1-4.1)	5.7(3.6-8.5)	9.8(6.6-14.0)	4.7(2.4-8.0)	4.0(3.1-4.9)

5.11.3: Prevalence of hypertension

5.11.3.1: For females

Prevalence of Hypertension as defined by the lower level (systolic >or $=140$ and or diastolic $>$ or $=90 \mathrm{mmHg}$), level B rises rapidly from 5.4% to 49.5% from the younger to the older age group. A similar rapid rise is observed for the higher Level A (systolic>160mmHg and /or diastolic of $>95 \mathrm{mmHg}$), from 1.5% to 24.4% from the younger to the older age group. Severe hypertension rises to a peak in the 55-64 year age group with the prevalence of 9.8% and appears to fall in the $60+$ year age group with the prevalence of 4.7%, see Table 5.10 c. Of note it is important to note the very high prevalence of Level B across all the provinces.

| 5.11.3.2:- .For males

Formatted

A similar pattern was also observed among males, see Table 5.10d below.

Formatted

Formatted

Table 5.10d: Prevalence of hypertension among males by age group and Province.

Province	Category of hypertension	$\begin{gathered} 25-34 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
		N=77	$\mathrm{N}=46$	N=52	$\mathrm{N}=29$	$\mathrm{N}=45$	$\mathrm{N}=249$
Midlands	Level A hypertension (SBP>160\& DBP>95)	0.0(0.0-0.05)	2.2(0.0-11.5)	9.6(3.2-21.0)	17.2(5.8-35.8)	20.0(9.6-43.6)	8.0(4.6-11.4)
	Level B hypertension (SBP $>\mathbf{1 4 0}$ \& DBP >90)	6.5(2.1-14.5)	17.4(7.8-31.4)	26.9(15.6-41.0)	31.0(15.3-50.8)	57.8(42.2-72.3)	24.9(19.5-30.3)
	Level C hypertension (SBP>170 \& DBP>100)	$0.0(0.0-4.7)$	2.2(0.1-11.5)	7.7(2.1-18.5)	17.2(5.8-35.8)	17.8(8.0-32.1)	7.2(4.0-10.5)
	Severe hypertension (SBP>180 \& DBP >110)	0.0(0.0-4.7)	2.1(0.1-11.5)	3.8(0.5-13.2)	13.8(3.9-31.7)	8.9(2.5-21.2)	4.4(1.8-7.0)
		$\mathrm{N}=33$	$\mathrm{N}=24$	$\mathrm{N}=35$	$\mathrm{N}=20$	$\mathrm{N}=35$	$\mathrm{N}=147$
Mash Central	Level A hypertension (SBP>160\& DBP>95)	0.0(0.0-10.6)	0.0(0.0-14.2)	8.6(1.8-23.1)	15.0(3.2-37.9)	22.9(10.4-40.1)	9.5(4.7-14.3)
	Level B hypertension (SBP $>140 \&$ DBP>90)	9.1(1.9-24.3)	12.5(2.7-32.4)	11.4(3.2-26.8)	40.0(19.1-63.9)	51.4(34.0-68.6)	25.4(17.5-31.5)
	Level C hypertension (SBP>170 \& DBP>100)	0.0(0.0-10.6)	0.0(0.0-14.2)	2.9(0.1-14.9)	15.0(3.2-37.9)	14.3(4.8-30.3)	6.1(2.2-10.0)
	Severe hypertension (SBP>180 \& DBP>110)	0.0(0.0-10.6)	0.0(0.0-14.2)	2.9(0.1-14.9)	5.0(0.1-24.9)	5.7(0.7-19.2)	2.7(0.1-5.4)
		$\mathrm{N}=24$	$\mathrm{N}=28$	$\mathrm{N}=32$	$\mathrm{N}=35$	$\mathrm{N}=59$	$\mathrm{N}=178$
Mat South	Level A hypertension (SBP>160\& DBP>95)	0.0(0.0-14.2)	3.6(0.0-18.3)	9.4(2.0-25.0)	8.6(1.8-23.1)	13.6(6.0-25.0)	8.4(4.3-14.5)
	Level B hypertension (SBP $>\mathbf{1 4 0}$ \& DBP>90)	0.0(0.0-14.2)	14.3(4.0-32.7)	12.5(3.5-29.0)	25.7(12.5-43.3)	30.5(19.2-43.9)	19.7(13.8-25.6)
	$\begin{aligned} & \text { Level C hypertension } \\ & \text { (SBP>170 \& } \mathbf{D B P}>\mathbf{1 0 0} \text {) } \end{aligned}$	0.0(0.0-14.2)	3.5(0.1-18.3)	6.3(0.8-20.8)	8.6(1.8-23.1)	13.6(6.0-25.0)	7.9(3.9-11.9)
	Severe hypertension (SBP>180 \& DBP>110)	0.0(0.0-14.2)	0.0(0.0-12.3)	3.1(0.1-16.2)	8.6(1.8-23.1)	3.4(0.4-11.7)	3.4(0.7-6.0)
		$\mathrm{N}=134$	$\mathrm{N}=98$	$\mathrm{N}=119$	$\mathrm{N}=84$	$\mathrm{N}=139$	$\mathrm{N}=574$
Total	Level A hypertension (SBP>160\& DBP>95)	O.O(0.0-2.7)	2.0(0.2-7.2)	9.2(4.7-15.9)	13.1(6.7-22.2)	18.0(12.0-25.4)	8.5(6.2-10.8)
	Level B hypertension (SBP >140 \& DBP>90)	6.0(2.6-11.4)	15.3(8.8-24.0)	18.5(12.0-26.6)	31.0(21.3-42.0)	44.6(36.2-53.30	23.2(19.7-26.6)
	Level C hypertension (SBP>170 \& DBP>100)	0.0(0.0-2.7)	2.0(0.2-7.2)	5.9(2.4-11.7)	13.1(6.7-22.2)	15.1(9.6-22.2)	7.1(5.0-9.3)
	Severe hypertension (SBP>180 \& DBP>110)	0.0(0.0-2.7)	1.0(0.0-5.6)	3.4(0.9-8.4)	9.5(4.2-17.9)	5.8(2.5-11.0)	3.7(2.1-5.1)

5.11.4: Discussion on prevalence of hypertension

In general the prevalence of hypertension using lower or high cut-off point is high in the study population. There is a high prevalence of severe undiagnosed hypertension, with a prevalence of 4.0% for females and 3.7% for males. Considering undiagnosed severe hypertension the prevalence becomes significantly higher in the 45-54 year age group and above.

5.12.0: Biochemical measurements (STEP 3 of STEPS)

A total of 1837 (60\%) had biochemical measurements (glucose and lipids) done.
Table 5.11a: Mean fasting blood sugar by sex, age group and province

Province	Sex	$\begin{gathered} 25-34 \\ N^{*} \\ \text { Mean }(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$35-44$ N^{*} Mean $(95 \% \mathrm{CI})$	$45-54$ N^{*} Mean $(95 \% \mathrm{CI})$	$\begin{gathered} 55-64 \\ N^{*} \\ \text { Mean (95\%CI)) } \end{gathered}$	$65+$ N^{*} Mean $(\mathbf{(9 5 \% C I})$	Overall N^{*} Mean ((95\%CI)
Midlands	Male	$\begin{gathered} 51 \\ 4.9(4.5-5.3) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 4.7(4.3-5.2) \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ 5.0(4.6-5.4) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 5.5(4.9-6.2) \end{gathered}$	$\begin{gathered} 37 \\ 5.8(5.1-6.5) \\ \hline \end{gathered}$	$\begin{gathered} 190 \\ 5.2(4.9-5.4) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 128 \\ 4.7(4.5-5.0) \\ \hline \end{gathered}$	$\begin{gathered} 122 \\ 5.2(4.7-5.6) \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ 5.4(4.7-6.2) \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 5.2(5.0-5.5) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 5.7(5.1-6.3) \\ \hline \end{gathered}$	$\begin{gathered} 411 \\ 5.1(4.9-5.3) \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 29 \\ 4.8(4.4-5.2) \end{gathered}$	$\begin{gathered} 21 \\ 4.1(3.8-4.4) \end{gathered}$	$\begin{gathered} 24 \\ 5.0(4.4-5.5) \end{gathered}$	$\begin{gathered} 18 \\ 4.9(4.3-5.5) \end{gathered}$	$\begin{gathered} 25 \\ 4.1(3.7-4.5) \end{gathered}$	$\begin{gathered} 117 \\ 4.6(4.4-4.8) \end{gathered}$
	Female	$\begin{gathered} 139 \\ 4.9(4.6-5.3) \\ \hline \end{gathered}$	$\begin{gathered} 104 \\ 4.7(4.5-5.0) \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ 4.5(4.3-4.7) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 4.5(4.2-4.9) \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 4.9(4.4-5.4) \\ \hline \end{gathered}$	$\begin{gathered} 437 \\ 4.7(4.6-4.9) \\ \hline \end{gathered}$
Mat South	Male	$\begin{gathered} 19 \\ 5.6(5.0-6.1) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 7.4(6.0-8.7) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 6.1(3.8-8.4) \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 6.6(5.3-7.9) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 5.5(5.2-5.9) \\ \hline \end{gathered}$	$\begin{gathered} 137 \\ 6.1(5.6-6.6) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 104 \\ 5.7(5.4-6.1) \end{gathered}$	$\begin{gathered} 105 \\ 5.7(5.5-6.0) \end{gathered}$	$\begin{gathered} 142 \\ 5.8(5.4-6.1) \end{gathered}$	$\begin{gathered} 89 \\ 6.0(5.5-6.5) \end{gathered}$	$\begin{gathered} 115 \\ 5.7(5.4-6.1) \end{gathered}$	$\begin{gathered} 545 \\ 5.8(5.6-5.9) \end{gathered}$
Total	Male	$\begin{gathered} 99 \\ 5.0(4.8-5.2) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 5.3(4.8-5.8) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ \text { 5.3(4.7-5.9) } \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \text { 5.8(5.2-6.4) } \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ 5.3(5.0-5.6) \\ \hline \end{gathered}$	$\begin{gathered} 444 \\ 5.3(5.1-5.5) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 371 \\ \text { 5.1(4.9-5.3) } \end{gathered}$	$\begin{gathered} 331 \\ \text { 5.2(5.0-5.4) } \\ \hline \end{gathered}$	$\begin{gathered} 298 \\ 5.3(5.1-5.6) \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 5.4(5.1-5.6) \\ \hline \end{gathered}$	$\begin{gathered} 193 \\ 5.5(5.3-5.8) \\ \hline \end{gathered}$	$\begin{gathered} 1393 \\ 5.3(5.2-5.4) \\ \hline \end{gathered}$
National		$\begin{gathered} 470 \\ 5.1(4.9-5.2) \\ \hline \end{gathered}$	$\begin{gathered} 408 \\ 5.2(5.0-5.4) \\ \hline \end{gathered}$	$\begin{gathered} 388 \\ \text { 5.3(5.1-5.5) } \\ \hline \end{gathered}$	$\begin{gathered} 270 \\ 5.5(5.2-5.7) \\ \hline \end{gathered}$	$\begin{gathered} 301 \\ 5.4(5.2-5.6) \\ \hline \end{gathered}$	$\begin{gathered} 1837 \\ 5.3(5.2-5.4) \\ \hline \end{gathered}$

5.12.1: Mean fasting blood sugar

Overall the mean fasting blood sugar levels was not different in all provinces, with the exception of Matebeleland South province, which showed high mean blood sugar levels and it was not different across all the age groups.

Formatted

Table 5.11b:- Prevalence of diabetes mellitus among males by age group and province

Province	Sex	$\begin{gathered} 25-34 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ N^{*} \\ \% ~ 95 \% ~ C I) ~ \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \mathrm{~N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
Midlands	Fasting (>7.0)	$\begin{gathered} 51 \\ 3.9(0.5-13.5) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 5.7(0.7-19.2) \end{gathered}$	$\begin{gathered} 42 \\ 2.4(0.1-12.6) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 16.0(4.5-35.1) \end{gathered}$	$\begin{gathered} 37 \\ 10.8(3.0-25.4) \\ \hline \end{gathered}$	$\begin{gathered} 193 \\ 6.7(3.6-11.2) \end{gathered}$
	Fasting >7.8 and 2HPP $>=11.1$)	$\begin{gathered} 50 \\ 0.0(0.0-7.1) \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ 0.0(0.0-11.2) \end{gathered}$	$\begin{gathered} \hline 39 \\ 2.6(0.1-13.5) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 0.0(0.0-16.1) \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ 5.9(0.7-19.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 178 \\ 1.7(0.3-4.8) \\ \hline \end{gathered}$
Mash Central	Fasting (>7.0)	$\begin{gathered} 29 \\ 10.3(2.2-27.4) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 0.0(0.0-16.1) \end{gathered}$	$\begin{gathered} 24 \\ 12.5(2.7-32.4) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 5.6(0.1-27.3) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 4.0(0.1-20.4) \end{gathered}$	$\begin{gathered} 119 \\ 6.7(2.9-12.8) \end{gathered}$
	Fasting >7.8 and 2HPP $>=11.1$)	$\begin{gathered} 26 \\ 0.0(0.0-13.2) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 0.0(0.0-19.5) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 0.0(0.0-17.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 \\ 0.0(0.0-24.7) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 0.0(0.0-16.1) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ 0.0(0.0-3.7) \\ \hline \end{gathered}$
Mat South	Fasting (>7.0)	$\begin{gathered} 19 \\ 10.5(1.3-33.1) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 33.3(14.6-57.0) \end{gathered}$	$\begin{gathered} 24 \\ 8.3(1.0-27.0) \end{gathered}$	$\begin{gathered} 27 \\ 22.2(8.6-42.3) \end{gathered}$	$\begin{gathered} 46 \\ 13.0(4.9-26.3) \end{gathered}$	$\begin{gathered} 138 \\ 16.6(10.9-24.0) \end{gathered}$
	Fasting >7.8 and 2HPP $>=11.1$)	$\begin{gathered} \hline 15 \\ 0.0(0.0-21.8) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 5.0(0.1-24.9) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 4.8(0.1-23.8) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 15.4(4.4-34.9) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 0.0(0.0-8.2) \\ \hline \end{gathered}$	$\begin{gathered} 126 \\ 4.8(1.8-10.2) \end{gathered}$
Total	Fasting (>7.0)	$\begin{gathered} 99 \\ 7.1(2.9-14.0) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 11.7(5.5-21.0) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ 6.7(2.5-13.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 70 \\ 15.7(8.1-26.4) \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ 10.2(5.2-17.5) \\ \hline \end{gathered}$	$\begin{gathered} 450 \\ 9.8(7.2-12.9) \\ \hline \end{gathered}$
	Fasting >7.8 and $2 H P P>=11.1$)	$\begin{gathered} 91 \\ 0.0(0.0-4.0) \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ 1.5(0.0-7.9) \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ 2.5(0.3-8.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ 6.7(1.8-16.2) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ 2.0(0.2-7.2) \\ \hline \end{gathered}$	$\begin{gathered} 402 \\ 2.2(1.0-4.2) \\ \hline \end{gathered}$

N^{*} Indicates total number within age group
5.12.2: Prevalence of diabetes mellitus (both males and females)

Prevalence of diabetes was defined using two cut-off point, a fasting greater than 7.0 and fasting of >7.8 and two-hour post-prandial glucose. Generally defining diabetes using a fasting blood sugar of $>=7.0 \mathrm{mmols} / \mathrm{L}$ gives a higher prevalence of diabetes compared to the use of the oral glucose tolerance test (fasting .=7.8 and 2HPP>=11.1) in both sexes, see Tables 5.11a and 5.11b.

Table 5.11c: Prevalence of diabetes mellitus among Females by age group and province

Province	Sex	$\begin{gathered} 25-34 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ N^{*} \\ \% 95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { Overall } \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
Midlands	Fasting (>7.0)	128 $4.7(1.7-9.9)$	$\begin{gathered} 122 \\ 7.4(3.4-13.5) \end{gathered}$	$\begin{gathered} \hline 82 \\ 11.0(5.1-19.8) \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 5.9(1.2-16.2) \end{gathered}$	$\begin{gathered} 28 \\ 17.9(6.1-36.9) \\ \hline \end{gathered}$	$\begin{gathered} 428 \\ 7.5(5.2-10.4) \\ \hline \end{gathered}$
	Fasting >7.8 and OGTT >11.1)	$\begin{gathered} 116 \\ 0.9(0.0-4.7) \end{gathered}$	$\begin{gathered} 112 \\ 0.9(0.0-4.9) \end{gathered}$	$\begin{gathered} 77 \\ 1.3(0.0-7.0) \end{gathered}$	$\begin{gathered} 47 \\ 0.0(0.0-7.5) \end{gathered}$	$\begin{gathered} 25 \\ 0.0(0.0-13.7) \end{gathered}$	$\begin{gathered} 394 \\ 0.8(0.2-2.2 \end{gathered}$
Mash Central	Fasting (>7.0)	$\begin{gathered} 139 \\ 5.0(2.0-10.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 104 \\ 3.8(1.1-9.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 84 \\ 0.0(0.0-4.3) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 5.0(1.0-13.9) \end{gathered}$	$\begin{gathered} 50 \\ 4.0(0.5-13.7) \end{gathered}$	$\begin{gathered} \hline 450 \\ 3.6(2.0-5.7) \\ \hline \end{gathered}$
	Fasting >7.8 and OGTT >11.1)	$\begin{gathered} 114 \\ 1.8(0.2-6.2) \end{gathered}$	$\begin{gathered} 89 \\ 1.1(0.0-6.1) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 0.0(0.0-4.9) \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 2.0(0.0-10.4) \end{gathered}$	$\begin{gathered} 45 \\ 2.2(0.1-11.8) \\ \hline \end{gathered}$	$\begin{gathered} 382 \\ 1.3(0.4-3.0) \\ \hline \end{gathered}$
Mat South	Fasting (>7.0)	$\begin{gathered} 104 \\ 15.4(9.1-23.8) \\ \hline \end{gathered}$	$\begin{gathered} 105 \\ \text { 18.1(11.3-26.8) } \end{gathered}$	$\begin{gathered} 132 \\ 14.4(8.9-21.6) \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ 24.7(16.2-35.0) \\ \hline \end{gathered}$	$\begin{gathered} 115 \\ \text { 18.3(11.7-26.5) } \end{gathered}$	$\begin{gathered} 554 \\ 17.7(14.6-21.1) \\ \hline \end{gathered}$
	Fasting >7.8 and OGTT >11.1)	$\begin{gathered} 90 \\ 1.1(0.0-6.0) \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ 3.3(0.7-9.2) \\ \hline \end{gathered}$	$\begin{gathered} 114 \\ 0.9(0.0-4.8) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ \text { 2.6(0.3-9.1) } \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ 1.9(0.2-6.6) \\ \hline \end{gathered}$	$\begin{gathered} 488 \\ 1.8(0.8-3.5) \\ \hline \end{gathered}$
Total	Fasting (>7.0)	$\begin{gathered} 371 \\ 7.8(5.3-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 331 \\ 9.7(6.7-13.4) \end{gathered}$	$\begin{gathered} 298 \\ 9.4(6.3-18.3) \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 14.0(9.5-19.6) \\ \hline \end{gathered}$	$\begin{gathered} 193 \\ 14.5(9.9-20.3) \\ \hline \end{gathered}$	$\begin{gathered} 1432 \\ 10.2(8.7-11.9) \\ \hline \end{gathered}$
	Fasting >7.8 and OGTT >11.1)	$\begin{gathered} \hline 320 \\ 1.3(0.3-3.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 293 \\ 1.7(0.6-3.9) \end{gathered}$	$\begin{gathered} 265 \\ 0.8(0.1-2.7) \end{gathered}$	$\begin{gathered} 175 \\ 1.7(0.4-4.9) \\ \hline \end{gathered}$	$\begin{gathered} 176 \\ 1.7(0.4-4.9) \\ \hline \end{gathered}$	$\begin{gathered} 1264 \\ 1.3(0.8-2.1) \end{gathered}$

5.12.3: Prevalence of Impaired Glucose Tolerance (IGT)

The overall prevalence of IGT ranged from 1.6% to 9.4% among females and 4.0% to 8.0% in males, see Tables 5.11d. It is worth noting that the prevalence in Matebeleland province is exaggerated.

Table 5.11d: Prevalence of impaired glucose tolerance by age, sex and province

Province	Sex	$\begin{gathered} 25-34 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 35-44 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 45-54 \\ N^{*} \\ \% 95 \% ~ C I) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ N^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 65+ \\ \mathrm{N}^{*} \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { Overall } \\ N^{*} \\ \%(95 \% ~ C I) \end{gathered}$
Midlands	Male	$\begin{gathered} 50 \\ 6.0(1.3-16.5) \end{gathered}$	$\begin{gathered} 31 \\ 3.2(0.1-16.7) \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ 2.6(0.1-13.50 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 9.5(1.2-30.4) \end{gathered}$	$\begin{gathered} 34 \\ 0.0(0.0-10.3) \\ \hline \end{gathered}$	$\begin{gathered} 175 \\ 4.0(1.6-8.7) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 116 \\ 3.4(0.9-8.6) \\ \hline \end{gathered}$	$\begin{gathered} 112 \\ 2.7(0.6-7.6) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 2.6(0.3-9.1) \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 4.3(5.1-14.5) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 12.0(2.5-31.2) \\ \hline \end{gathered}$	$\begin{gathered} 377 \\ 3.7(2.0-6.2) \\ \hline \end{gathered}$
Mash Central	Male	$\begin{gathered} 26 \\ 7.7(1.0-25.1) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 0.0(0.0-19.5) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 10.5(13.0-33.1) \end{gathered}$	$\begin{gathered} 13 \\ 0.0(0.0-24.7) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 0.0(0.0-16.1) \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ 4.2(1.1-10.3) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 114 \\ 2.6(0.5-7.5) \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ 1.1(0.0-6.1) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ 1.4(0.0-7.3) \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 2.0(0.1-10.4) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ 0.0(0.0-7.9) \\ \hline \end{gathered}$	$\begin{gathered} 373 \\ 1.6(0.6-3.5) \end{gathered}$
Mat South	Male	$\begin{gathered} 15 \\ 6.7(0.2-32.0) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 1.0(0.1-24.9) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 4.8(0.1-23.8) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 0.0(0.0-13.2) \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ 16.3(6.8-30.7) \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 8.0(3.9-14.2) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 90 \\ \text { 11.1(5.5-19.5) } \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ 9.8(4.6-17.8) \\ \hline \end{gathered}$	$\begin{gathered} 114 \\ 7.0(3.1-13.6) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 6.5(2.1-14.5) \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ 12.3(6.7-20.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 479 \\ 9.4(6.9-12.4) \\ \hline \end{gathered}$
Total	Male	$\begin{gathered} 91 \\ 6.6(2.5-13.8) \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ 2.9(0.4-10.2) \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ 5.1(1.4-12.5) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 3.3(0.4-11.5) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ 7.1(2.9-14.2) \\ \hline \end{gathered}$	$\begin{gathered} 396 \\ 5.3(3.3-8.0) \\ \hline \end{gathered}$
	Female	$\begin{gathered} 320 \\ 5.3(3.1-8.4) \\ \hline \end{gathered}$	$\begin{gathered} 293 \\ 4.4(2.4-7.5) \\ \hline \end{gathered}$	$\begin{gathered} 265 \\ 4.2(2.1-7.3) \\ \hline \end{gathered}$	$\begin{gathered} 175 \\ 4.6(2.0-8.8) \\ \hline \end{gathered}$	$\begin{gathered} 176 \\ 9.1(5.3-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 1229 \\ 5.2(4.1-6.7) \\ \hline \end{gathered}$

Table 5.11e: - Mean Total cholesterol, HDL, LDL and Triglyceride among males by age group and Province.

Province	Lipid profiles	$\begin{gathered} 25-34 \\ \text { Mean }(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \text { Mean }(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \text { Mean }(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 55-64 \\ \text { Mean }(95 \% \text { CI }) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \text { Mean (95\%CI) } \\ \hline \end{gathered}$	Overall Mean (95\%CI)
		$\mathrm{N}=60$	$\mathrm{N}=34$	$\mathrm{N}=53$	$\mathrm{N}=25$	$\mathrm{N}=36$	$\mathrm{N}=208$
Midlands	Total Cholesterol	$\begin{gathered} 60 \\ 3.7(3.5-4.0) \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ 3.9(3.6-4.3) \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ 4.2(4.0-4.5) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 4.6(4.0-5.1) \\ \hline \end{gathered}$	4.3(4.0-4.7)	4.1(4.0-4.2)
	HDL Cholesterol	1.3(1.2-1.4)	1.3(1.1-1.4)	1.3(1.2-1.4)	1.5(1.3-1.6)	1.4(1.2-1.5)	1.3(1.2-1.4)
	LDL Cholesterol	2.0(1.8-2.2)	2.1(1.9-2.4)	2.4(2.2-2.7)	2.5(2.1-2.9)	2.4(2.0-2.7)	2.3(2.1-2.4)
	Triglyceride	1.1(0.9-1.2)	1.5(1.1-1.8)	1.2(1.0-1.4)	1.3(1.0-1.6)	1.3(1.0-1.6)	1.2(1.1-1.3)
		$\mathrm{N}=31$	$\mathrm{N}=24$	$\mathrm{N}=31$	$\mathrm{N}=19$	$\mathrm{N}=29$	$\mathrm{N}=135$
Mash Central	Total Cholesterol	4.2(3.7-4.7)	3.8(3.4-4.2)	4.1(3.8-4.4)	4.4(4.0-4.9)	4.2(3.8-4.7)	4.2(4.0-4.3)
	HDL Cholesterol	$\begin{gathered} 31 \\ 1.4(1.2-1.6) \\ \hline \end{gathered}$	1.2(1.1-1.4)	1.3(1.2-1.5)	1.3(1.1-1.5)	1.2(1.0-1.4)	1.3(1.2-1.4)
	LDL Cholesterol	2.4(2.0-2.9)	2.1(1.9-2.4)	2.2(2.0-2.5)	2.6(2.3-3.0)	2.6(2.2-2.9)	2.4(2.2-2.6)
	Triglyceride	0.9(0.7-1.0)	1.0(0.8-1.2)	1.1(0.9-1.4)	1.1(0.9-1.4)	1.1(0.8-1.3)	1.0(0.9-1.1)
		$\mathrm{N}=21$	$\mathrm{N}=23$	$\mathrm{N}=32$	$\mathrm{N}=32$	$\mathrm{N}=54$	$\mathrm{N}=162$
Mat South	Total Cholesterol	4.2(3.7-4.7)	4.5(4.0-5.1)	4.4(4.0-4.8)	4.6(4.1-5.1)	4.9(4.6-5.3)	4.6(4.4-4.8)
	HDL Cholesterol	1.5(1.3-1.8)	1.5(1.2-1.7)	1.5(1.3-1.7)	1.5(1.3-1.7)	1.6(1.5-1.8)	1.5(1.4-1.6)
	LDL Cholesterol	2.2(1.8-2.6)	2.6(2.1-3.0)	2.4(2.1-2.7)	2.6(2.2-3.0)	2.8(2.5-3.1)	2.6(2.4-2.7)
	Triglyceride	1.1(0.9-1.4)	1.1(0.9-1.3)	1.1(0.9-1.2)	1.0(0.8-1.2)	1.3(1.1-1.5)	1.2(1.1-1.3)
		$\mathrm{N}=112$	$\mathrm{N}=81$	$\mathrm{N}=116$	$\mathrm{N}=76$	$\mathrm{N}=119$	N=504
Total	Total Cholesterol	3.9(3.7-4.2)	4.1(3.8-4.3)	4.2(4.1-4.4)	4.6(4.3-4.8)	4.6(4.4-6.0)	4.3(4.2-4.4)
	HDL Cholesterol	1.3(1.2-1.4)	1.3(1.2-1.4)	1.4(1.3-1.5)	1.4(1.3-1.5)	1.4(1.3-1.5)	1.4(1.3-1.5)
	LDL Cholesterol	2.1(2.0-2.3)	2.3(2.1-2.4)	2.4(2.2-2.5)	2.6(2.4-2.8)	2.6(2.4-2.8)	2.4(2.3-2.5)
	Triglyceride	1.0(0.9-1.1)	1.2(1.0-1.4)	1.2(1.0-1.3)	1.2(1.0-1.3)	1.2(1.1-1.4)	1.2(1.1-1.3)

Table 5.11f: Mean Total cholesterol, HDL, LDL and Triglyceride among females by age group and Province.

Province	Lipid profiles	$\begin{gathered} 25-34 \\ \text { Mean }(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 35-44 \\ \text { Mean }(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 45-54 \\ \text { Mean (95\%CI) } \end{gathered}$	$\begin{gathered} 55-64 \\ \text { Mean (95\%CI) } \\ \hline \end{gathered}$	$65+$ Mean (95\%CI)	Overall Mean (95\%CI)
		$\mathrm{N}=145$	$\mathrm{N}=132$	$\mathrm{N}=97$	$\mathrm{N}=55$	$\mathrm{N}=31$	$\mathrm{N}=460$
Midlands	Total Cholesterol	3.9(3.7-4.1)	4.1(3.9-4.3)	4.5(4.3-4.7)	4.5(4.2-4.9)	4.8(4.5-5.2)	4.2(4.1-4.3)
	HDL Cholesterol	$\begin{gathered} 145 \\ 1.2(1.1-1.3) \end{gathered}$	1.3(1.2-1.4)	1.5(1.4-1.6)	1.3(1.2-1.5)	1.5(1.3-1.7)	1.3(1.2-1.4)
	LDL Cholesterol	2.3(2.1-2.4)	2.4(2.2-2.6)	2.5(2.3-2.7)	2.6(2.2-2.9)	2.6(2.4-2.9)	2.4(2.3-2.5)
	Triglyceride	1.0(0.9-1.1)	1.0(0.9-1.1)	1.3(1.1-1.4)	1.3(1.1-1.5)	1.4(1.1-1.8)	1.1(1.0-1.2)
		$\mathrm{N}=164$	$\mathrm{N}=120$	$\mathrm{N}=101$	$\mathrm{N}=75$	$\mathrm{N}=64$	$\mathrm{N}=524$
Mash Central	Total Cholesterol	4.2(4.0-4.3)	4.0(3.8-4.2)	4.4(4.1-4.6)	4.1(3.9-4.3)	4.3(4.1-4.6)	4.2(4.1-4.3)
	HDL Cholesterol	1.3(1.2-1.4)	1.2(1.1-1.3)	1.3(1.2-1.4)	1.3(1.2-1.4)	1.4(1.2-1.5)	1.3(1.2-1.4)
	LDL Cholesterol	2.3(2.2-2.5)	2.3(2.2-2.5)	2.6(2.4-2.8)	2.3(2.1-2.5)	2.5(2.3-2.7)	2.4(2.3-2.5)
	Triglyceride	1.1(1.0-1.2)	1.0(0.9-1.1)	1.0(0.9-1.1)	1.1(1.0-1.2)	1.0(0.9-1.2)	1.0(0.9-1.1)
		$\mathrm{N}=114$	$\mathrm{N}=131$	$\mathrm{N}=152$	$\mathrm{N}=106$	$\mathrm{N}=141$	$\mathrm{N}=644$
Mat South	Total Cholesterol	4.4(4.2-4.6)	4.6(4.4-4.8)	4.4(4.2-4.6)	4.6(4.4-4.9)	4.7(4.5-5.0)	4.6(4.5-4.7)
	HDL Cholesterol	1.4(1.3-1.5)	1.5(1.4-1.6)	1.4(1.3-1.5)	1.5(1.4-1.6)	1.6(1.5-1.7)	1.5(1.4-1.6)
	LDL Cholesterol						
	Triglyceride	$\frac{2.5(2.3-2.7)}{1.1(1.0-1.2)}$	$\frac{2.5(2.3-2.7)}{1.2(1.0-1.3)}$	2.5(2.3-2.6)	2.7(2.5-2.8)	$\frac{2.6(2.4-2.8)}{1.2(1.1-1.4)}$	2.5(2.4-2.6)
							1.1(1.0-1.2)
		$\mathrm{N}=423$	$\mathrm{N}=383$	$\mathrm{N}=350$	$\mathrm{N}=236$	$\mathrm{N}=236$	$\mathrm{N}=1628$
Total	Total Cholesterol	4.1(4.0-4.2)	4.2(4.1-4.4)	4.4(4.3-4.5)	4.4(4.3-4.6)	4.6(4.5-4.7)	4.3(4.2-4.4)
	HDL Cholesterol	1.3(1.2-1.5)	1.4(1.3-1.5)	1.4(1.3-1.5)	1.4(1.3-1.5)	1.5(1.4-1.6)	1.4(1.3-1.5)
	LDL Cholesterol	2.3(2.2-2.4)	2.4(2.3-2.5)	2.5(2.4-2.6)	2.5(2.4-2.7)	2.6(2.5-2.7)	2.5(2.4-2.6)
	Triglyceride	1.0(0.9-1.1)	1.0(0.9-1.1)	1.1(1.0-1.2)	1.1(1.0-1.2)	1.2(1.1-1.3)	1.1(1.0-1.2)

In considering total cholesterol, HDL-C and Triglycerides, only Total Cholesterol showed a rising trends with age, for both males and females, see Table 5.11e and f

Table 5.11g; Prevalence of abnormal Cholesterol and HDL-Cholesterol among males by age group and province

Province	Abnormal Lipid levels Total cholesterol (TCL)	$\begin{gathered} 25-34 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \% 95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \%(95 \% \text { CI) } \end{gathered}$
		$\mathrm{N}=60$	$\mathrm{N}=34$	$\mathrm{N}=53$	$\mathrm{N}=25$	N=36	$\mathrm{N}=208$
Midlands	Level A (TCL>=6.5)	0.0(0.0-6.0)	0.0(0.0-10.3)	1.9(0.0-10.1)	8.0(1.0-26.0)	0.0(0.0-9.7)	1.4(0.3-4.2)
	Level B (TCL>=5.2)	10.0(3.8-20.5)	8.8(1.9-23.7)	13.2(5.5-23.3)	28.0(12.1-49.4)	30.6(16.3-48.1)	16.3(11.6-22.1)
	HDL cholesterol (<=0.9)	11.7(4.8-22.6)	17.6(6.8-34.5)	17.0(8.1-29.8)	0.0(0.0-13.7)	2.8(0.1-14.5)	11.1(7.1-16.1)
		$\mathrm{N}=31$	N=24	$\mathrm{N}=31$	$\mathrm{N}=19$	$\mathrm{N}=29$	N=134
Mash Central	Level A (TCL>=6.5)	3.2(0.1-16.7)	0.0(0.0-14.2)	3.2(0.1-16.7)	5.3(0.1-26.0)	3.4(0.1-17.8)	3.0(0.8-7.5)
	Level B (TCL>=5.2)	22.6(9.6-41.1)	12.5(2.7-32.4)	9.7(2.0-25.8)	15.8(3.4-39.6)	20.7(8.0-39.7)	16.4(10.6-23.8)
	HDL cholesterol (<=0.9)	25.8(11.9-44.6)	20.8(7.1-42.2)	16.1(5.5-33.7)	21.1(6.1-45.6)	24.1(10.3-43.5)	21.6(15.0-29.6)
		$\mathrm{N}=21$	$\mathrm{N}=23$	N=32	$\mathrm{N}=32$	N=54	$\mathrm{N}=162$
Mat South	Level A (TCL>=6.5)	0.0(0.0-16.1)	8.7(1.0-28.0)	3.1(7.1-16.2)	9.4(2.0-25.0)	5.6(1.2-15.4)	5.6(2.7-10.3)
	Level B (TCL>=5.2)	14.3(3.0-36.3)	26.1(10.2-48.4)	15.6(5.3-32.8)	25.0(11.5-43.4)	44.4(13.9-58.6)	28.4(21.6-36.0)
	HDL cholesterol (<=0.9)	9.5(11.7-30.4)	13.0(2.8-33.6)	15.6(5.3-32.7)	9.4(2.0-25.0)	7.5(2.1-18.2)	10.6(6.3-16.4)
		$\mathrm{N}=112$	$\mathrm{N}=81$	$\mathrm{N}=116$	$\mathrm{N}=76$	$\mathrm{N}=119$	$\mathrm{N}=504$
Total	Level A (TCL>=6.5)	0.9(0.0-4.9)	2.5(0.3-8.6)	2.6(0.5-7.4)	7.9(3.0-16.4)	3.4(0.9-8.4)	3.2(1.8-5.1)
	Level B (TCL>=5.2)	14.3(8.4-22.2)	14.8(7.9-24.4)	12.9(7.4-20.4)	23.7(14.7-34.8)	34.5(26.7-43.7)	20.2(16.8-24.0)
	HDL cholesterol ($<=0.9$)	15.2(9.1-23.2)	17.3(9.8-27.3)	16.4(10.2-24.4)	9.2(3.8-18.1)	10.2(5.4-17.1)	13.7(10.8-17.0)

5.12.5: Prevalence of hypercholesterolemia

Using a high total cholesterol level of greater or equal to $6.5 \mathrm{mmol} / \mathrm{L}$ to define hypercholesterolemia, the prevalence was 3.2% in males and 4.7% among females, when using a lower cut-off point of $5.2 \mathrm{mmol} / \mathrm{L}$ the prevalence was 20.2% in males and 21.3% among females.

Formatted

Table 5.11h: Prevalence of abnormal cholesterol and HDL Cholesterol among females by age group and province

Ta	5.11h: Prevalence	abnormal	sterol and	L Choleste	ong femal	ge group an	vince
Province	Abnormal Lipid levels Total cholesterol (TCL)	$\begin{gathered} 25-34 \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 35-44 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \% 95 \% \text { CI) } \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} 65+ \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \%(95 \% \mathrm{CI}) \end{gathered}$
		$\mathrm{N}=145$	$\mathrm{N}=132$	$\mathrm{N}=97$	$\mathrm{N}=55$	$\mathrm{N}=31$	$\mathrm{N}=460$
Midlands	Level A (TCL>=6.5)	1.4(0.2-4.9)	2.3(0.5-6.5)	2.1(0.3-7.3)	5.5(1.1-15.1)	$3.2(0.1-16.7)$	2.4(1.2-4.2)
	Level B (TCL>=5.2)	11.7(7.0-18.1)	18.2(12.0-25.8)	23.7(15.7-33.4)	21.8(11.8-35.0)	41.9(24.5-60.9)	19.3(15.8-23.3)
	HDLC- (<=0.9)	14.5(9.2-21.3)	18.2(12.0-25.8)	4.2(1.1-10.3)	16.4(7.8-28.8)	6.5(0.8-21.4)	13.1(10.1-16.5)
		$\mathrm{N}=164$	$\mathrm{N}=120$	$\mathrm{N}=101$	N=75	$\mathrm{N}=64$	$\mathrm{N}=524$
Mash Central	Level A (TCL> $\mathbf{6 . 5}$)	1.8(.04-5.3)	3.3(0.9-8.3)	5.0(1.6-11.1)	1.3(0.0-7.2)	1.6(0.0-8.4)	2.7(1.5-4.4)
	Level B (TCL>=5.2)						
	HDL-C (<=0.9)	$\frac{14.6(9.6-21.0)}{110(6.6-1.8)}$	$\frac{8.3(4.1-14.8)}{16.7(10.5-24.6)}$	$\frac{19.8(12.5-28.9)}{12.9(7.0-21.0)}$	$17.3(9.6-27.8)$ $18.4(10.5-29.0)$	$\frac{17.2(8.9-28.7)}{109(4.5-25)}$	$\frac{14.9(11.9-18.2)}{137(109-170)}$
		$\mathrm{N}=114$	$\mathrm{N}=131$	N=152	N=106	$\mathrm{N}=141$	$\mathrm{N}=644$
Mat South	Level A (TCL>=6.5)	7.9(3.7-14.5)	7.6(3.7-13.6)	3.9(1.5-8.4)	8.5(4.0-15.5)	12.1(7.2-18.6)	7.9(6.0-10.3)
	Level B (TCL>=5.2)	22.8(15.5-31.6)	27.5(20.0-36.0)	23.0(16.6-30.5)	30.2(21.7-39.9)	36.2(28.3-44.7)	28.0(24.5-31.6)
	HDL-C (<=0.9)	9.7(5.0-16.8)	7.6(3.7-13.6)	7.9(4.2-18.5)	6.7(2.7-13.3)	10.6(6.1-16.9)	8.6(6.5-11.0)
		$\mathrm{N}=423$	$\mathrm{N}=383$	$\mathrm{N}=350$	$\mathrm{N}=236$	$\mathrm{N}=236$	$\mathrm{N}=1628$
Total	Level A (TCL> $\mathbf{6 . 5}$)	3.3(1.8-5.5)	4.4(2.6-7.0)	3.7(2.0-6.3)	5.5(3.0-9.2)	8.1(4.9-12.3)	4.7(3.7-5.8)
	Level B (TCL>=5.2)	15.8(12.5-19.7)	18.3(14.5-22.5)	22.3(18.0-27.0)	24.2(18.8-30.1)	31.8(25.9-38.1)	21.3(19.3-23.4)
	HDL-C (<=0.9)	11.8(8.9-15.3)	14.1(10.8-18.0)	8.3(5.7-11.7)	12.7(8.7-17.6)	10.2(6.6-14.8)	11.5(10.0-13.2)

5.12.6: Prevalence of abnormal LDL-Cholesterol and Triglycerides levels in both sexes

Generally there is a trend of rising high LDL-Cholesterol among males and females, but there are several odd prevalences in various age groups and prevalences, Table 5.11 i and j . In general for both males and females, there were few respondents with high triglycerides as defined by a
level of $>=4.1 \mathrm{mmolL}$. When considering borderline Trigylcerides elevations of between $2.3 \mathrm{mmol} / \mathrm{L}$ and $4.49 \mathrm{mmol} / \mathrm{L}$, the prevalence was 5.2% for males and $4.2 \mathrm{mmol} / \mathrm{L}$ for females.

Table 5.11i: Prevalence of abnormal H -LDL-C and H -Triglycerides levels among males by age group and Province.

Province	Category of lipids	$\begin{gathered} 25-34 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Overall } \\ \%(95 \% \mathrm{CI}) \end{gathered}$
		$\mathrm{N}=60$	$\mathrm{N}=34$	$\mathrm{N}=53$	$\mathrm{N}=25$	$\mathrm{N}=36$	$\mathrm{N}=204$
Midlands	High LDL Cholesterol (>=4.1)	0.0(0.0-6.0)	0.0(0.0-10.9)	3.8(0.5-13.2)	8.0(1.0-26.0)	5.7(0.7-19.2)	2.9(1.1-6.3)
	Borderline LDL Cholesterol (3.4-4.09)	5.0(1.0-13.9)	3.1(0.1-16.2)	5.8(1.2-15.9)	8.0(1.0-26.0)	17.1(6.6-33.6)	7.4(4.2-11.8)
	High Triglyceride (>=4.5)	0.0(0.0-6.0)	2.9(0.1-15.3)	0.0(0.0-6.7)	0.0(0.0-13.7)	0.0(0.0-9.7)	0.5(0.0-2.6)
	Borderline Triglyceride (2.3-4.49)	1.7(0.0-8.9)	11.8(3.3-27.5)	3.8(0.5-13.0)	8.0(1.0-26.0)	13.9(4.7-29.5)	6.7(3.7-11.0)
		$\mathrm{N}=31$	$\mathrm{N}=24$	$\mathrm{N}=31$	$\mathrm{N}=19$	$\mathrm{N}=29$	N=134
Mash Central	High LDL Cholesterol (>=4.1)	6.5(0.8-21.4)	0.0(0.0-14.2)	3.2(0.1-16.7)	5.3(0.1-26.0)	3.4(0.1-17.8)	3.7(1.2-8.5)
	Borderline LDL Cholesterol (3.4-4.09)	19.4(7.5-37.5)	8.3(1.0-27.0)	3.2(0.1-16.7)	5.3(0.1-26.0)	17.2(5.8-35.8)	11.2(6.4-17.8)
	High Triglyceride (>=4.5)	0.0(0.0-11.2)	0.0(0.0-14.2)	0.0(0.0-11.2)	0.0(0.0-17.6)	0.0(0.0-11.9)	0.0(0.0-2.7)
	Borderline Triglyceride (2.3-4.49)	0.0(0.0-11.2)	0.0(0.0-14.2)	6.5(0.8-21.4)	5.3(0.1-26.0)	3.4(0.1-17.8)	3.0(0.8-7.5)
		$\mathrm{N}=21$	$\mathrm{N}=23$	N=32	$\mathrm{N}=32$	$\mathrm{N}=53$	N=162
Mat South	High LDL Cholesterol (>=4.1)	0.0(0.0-16.1)	4.3(0.1-21.9)	3.1(0.1-16.2)	9.4(2.0-25.0)	9.4(3.1-20.7)	6.2(3.0-11.1)
	Borderline LDL Cholesterol (3.4-4.09)	14.3(3.0-36.3)	17.4(5.0-38.8)	9.4(2.0-25.0)	6.3(0.1-20.8)	20.7(10.8-34.1)	14.3(9.3-20.7)
	High Triglyceride (>=4.5)	0.0(0.0-16.1)	0.0(0.0-14.8)	0.0(0.0-10.90)	0.0(0.0-10.9)	0.0(0.0-6.6)	0.0(0.0-2.3)
	Borderline Triglyceride (2.3-4.49)	0.0(0.0-16.1)	4.3(0.1-21.9)	0.0(0.0-10.9)	6.3(0.8-20.1)	9.3(3.1-20.3)	4.9(2.2-9.5)
		N=112	$\mathrm{N}=81$	N=116	N=76	$\mathrm{N}=119$	N=504
Total	High LDL Cholesterol (>=4.1)	1.8(0.2-6.3)	1.3(0.0-6.9)	3.5(1.0-8.7)	7.9(3.0-16.4)	6.8(3.0-13.0)	4.2(2.6-6.4)
	Borderline LDL Cholesterol (3.4-4.09)	10.7(5.7-18.0)	8.9(3.6-17.4)	6.1(2.5-12.1)	6.6(2.2-14.7)	18.8(12.2-27.2)	10.6(8.1-13.7)
	High Triglyceride (>=4.5)	0.0(0.0-3.2)	1.2(0.0-6.7)	0.0(0.0-3.1)	0.0(0.0-4.7)	0.0(0.0-3.1)	0.2(0.0-1.1)
	Borderline Triglyceride (2.3-4.49)	0.9(0.0-4.9)	36.2(2.0-13.8)	3.4(0.9-8.6)	6.6(2.2-14.7)	9.2(4.7-15.9)	5.2(3.4-7.5)

Formatted

Table 5.11j:- Prevalence of abnormal lipids levels among females by age group and Province.

Province	Category of hypertension	$\begin{gathered} 25-34 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 35-44 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 45-54 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 55-64 \\ \%(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} 65+ \\ \%(95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { Overall } \\ \text { \%(95\%CI) } \\ \hline \end{gathered}$
		$\mathrm{N}=145$	$\mathrm{N}=132$	$\mathrm{N}=96$	$\mathrm{N}=55$	$\mathrm{N}=31$	$\mathrm{N}=476$
Midlands	High LDL Cholesterol (>=4.1)	4.2(1.5-8.8)	5.3(2.2-10.7)	6.1(2.3013.1)	9.3(3.1-20.3)	3.3(0.1-17.2)	5.5(3.6-8.0)
	Borderline LDL Cholesterol (3.4-4.09)	5.6(2.4-10.7)	5.3(2.2-10.7)	8.3(3.7-15.8)	3.7(0.5-12.7)	13.3(3.8-30.7)	6.4(4.3-9.0)
	High Triglyceride (>=4.5)	0.0(0.0-2.5)	0.0(0.0-2.8)	0.0(0.0-3.7)	18.2(0.0-9.7)	0.0(0.0-11.2)	0.2(0.0-1.2)
	Borderline Triglyceride (2.3-4.49)	1.4(0.2-4.9)	2.3(0.5-6.5)	8.2(3.6-15.6)	18.2(0.0-9.7)	12.9(3.6-29.8)	3.8(2.3-5.9)
		$\mathrm{N}=164$	$\mathrm{N}=120$	$\mathrm{N}=101$	$\mathrm{N}=75$	$\mathrm{N}=64$	$\mathrm{N}=540$
Mash Central	High LDL Cholesterol (>=4.1)	3.7(1.4-7.8)	4.2(1.4-9.5)	5.9(2.2-12.5)	4.0(0.8-11.2)	4.7(1.0-13.1)	4.5(2.9-6.6)
	Borderline LDL Cholesterol (3.4-4.09)	6.8(3.4-11.7)	4.2(1.4-9.5)	11.9(6.3-19.8)	9.3(3.8-18.3)	10.9(4.5-21.2)	8.3(6.2-11.0)
	High Triglyceride (>=4.5)	0.0(0.0-2.2)	0.8(0.0-4.6)	0.0(0.0-3.6)	0.0(0.0-4.8)	0.0(0.0-5.6)	0.2(0.0-1.0)
	Borderline Triglyceride (2.3-4.49)	4.9(2.1-9.4)	4.2(1.4-9.5)	0.0(0.0-3.6)	5.3(1.5-13.1)	3.1(0.4-10.8)	3.5(2.1-5.4)
		$\mathrm{N}=114$	$\mathrm{N}=131$	$\mathrm{N}=152$	N=106	$\mathrm{N}=141$	$\mathrm{N}=659$
Mat South	High LDL Cholesterol (>=4.1)	8.0(3.7-14.6)	6.9(3.2-12.6)	5.4(2.3-10.3)	7.6(3.3-14.5)	10.9(6.2-17.3)	7.7(5.8-10.0)
	Borderline LDL Cholesterol (3.4-4.09)	6.2(2.5-12.3)	11.5(6.6-18.2)	8.1(4.2-13.6)	13.3(7.5-21.4)	11.6(6.8-18.1)	$9.8(7.7=12.4 \mathrm{~s})$
	High Triglyceride (>=4.5)	0.0(0.0-3.2)	0.0(0.0-2.8)	0.7(0.0-3.6)	0.0(0.0-3.4)	0.7(0.0-3.9)	0.3(0.0-1.1)
	Borderline Triglyceride (2.3-4.49)	4.4(1.4-9.4)	5.3(2.2-10.7)	6.6(3.2-11.8)	4.7(1.5-10.7)	5.0(2.0-10.0)	5.2(3.6-7.1)
		$\mathrm{N}=421$	$\mathrm{N}=383$	$\mathrm{N}=350$	$\mathrm{N}=236$	$\mathrm{N}=236$	$\mathrm{N}=1675$
Total	High LDL Cholesterol (>=4.1)	5.0(3.1-7.5)	5.5(3.4-8.3)	5.8(3.6-8.8)	6.8(4.0-10.9)	8.2(5.0-12.5)	6.0(4.9-7.3)
	Borderline LDL Cholesterol (3.4-4.09)	6.2(4.1-8.9)	7.1(4.7-10.1)	9.2(6.4-12.8)	9.8(6.3-14.4)	11.6(7.8-16.5)	8.4(7.1-9.8)
	High Triglyceride (>=4.5)	0.0(0.0-0.9)	0.3(0.0-1.4)	0.3(0.0-1.6)	0.4(0.0-2.3)	10.4(0.0-2.3)	0.2(0.1-0.6)
	Borderline Triglyceride (2.3-4.49)	3.5(2.0-5.8)	3.9(2.2-6.4)	5.1(3.1-8.0)	4.2(2.1-7.7)	5.5(3.0-9.2)	4.2(3.3-5.3)

6.0: DISCUSSION

Zimbabwe national non-communicable disease risk factor survey was carried out in 3 of the 10 provinces of Zimbabwe namely Mashonaland Central, Midlands and Matebeleland South. The field survey was conducted in May and June 2005 and biochemical samples were run in the months of July and August 2005. Data entry for Step 1 and Step 2 data was carried out as soon as data became available to the data management team. Step 3 data became available in October and data entry was carried out when data quality checks were completed in November. Report writing started in September and a preliminary report became available in December 2005. A total of 3,081 respondents were included in the survey against an estimated sample size of 3,000. The response rate for Step 1 was 80% for and for Step 270% taking Step 1 accrual as being 100%.

6.1: Demographic profile

The preponderant proportion of respondents was young in Midlands and Mashonaland with more than 50% being 44 years old or younger. In Matebeleland, however over 62.5% were aged 45 years and or higher. This was probably related to differences in sampling strategy rather than any real difference in the age structure of the provinces. Because of the specific lower cut-off age of 25 years, most respondents were married. Significantly there were 20.1% who were widowed. Further analysis of this is necessary to determine if there are characteristics of this group which may indicate issue related to prevalent conditions such as HIV/AIDS. The level of education of respondents was high with 85.7% having achieved at lease a primary level of education. This is consistent with the high literacy in Zimbabwe, with a literacy rate of 90% in men and 80% in women. Unemployment was high in this survey. Variation in the unemployment levels among provinces was probably a reflection of the rural urban mix of the survey respondents.

6.2: Lifestyle Factors

Alcohol consumption was a male preserve in keeping with common local knowledge. Overall up to 57.9% or male respondents reported ever consuming alcohol compared to only 13.3% of female respondents admitting to the habit. Increasing age was also a determinant of a higher proportion of current alcohol consumption. Alcohol consumption appeared higher in Midlands province compared to the other provinces. Current tobacco consumption increased with age and was highest in the 65+ age group, especially in Midlands province. Similar to alcohol consumption males were the predominant users of tobacco products. Physical inactivity was reported to be high at work, transportation and leisure in all provinces. The items of the questionnaire on physical inactivity were probably not adequately adopted to suit lifestyles of the survey communities.

6.3: Anthropometric measurements

High grades of obesity as measured by BMI were more prevalent in females. The prevalence of grade 2 obesity was 6 times more in females than in males. Severe obesity with a BMI of ≥ 40 was only noted in females with a prevalence of 1.2%. Central obesity as assessed by Waist/Hip ratio was more prevalent among females across all age groups and in all provinces.

6.4: Dietary factors, FRAT and Food Frequency Distribution.

Analysis will be presented in a later report.

6.5: Hypertension

A history of hypertension increased with increasing age in all provinces and was highest
among females. Prevalence of hypertension was generally high in the survey respondents irrespective of whether a high or lower cutoff level was used. The prevalence of hypertension rose with age and was more common in females. There is a high prevalence of severe undiagnosed hypertension in both males and females.

6.6: Diabetes mellitus

A history of diabetes mellitus was obtained in 2.4% of the survey respondents. Presence of diabetes increased with age. Using a fasting blood glucose definition of diabetes mellitus with a cutoff level of $\geq 7 \mathrm{mmol} / \mathrm{l}$ gave a higher prevalence of diabetes compared to the use of the oral glucose tolerance test. Diabetes prevalence figures by fasting blood glucose averaged 10.2% while OGTT gave a prevalence of 1.3%. The prevalence of diabetes mellitus if we consider those with a history and those diagnosed with the condition on GTT was 3.7% on average. Matebeleland South province appeared to have a higher prevalence of diabetes diagnosed by fasting blood glucose. Further analysis of this data is required to determine its validity.

6.7: Lipids

Hypercholesterolaemia using a high cutoff level of $\geq 6.5 \mathrm{mmol} / \mathrm{l}$ was noted in 1.4% to 5.6% of respondents. An abnormally high prevalence was noted when using a lower cut off point of $5.2 \mathrm{mmol} / \mathrm{l}$. These data need further review as previous studies have noted lower levels of cholesterol in this population. Protective levels of HDL cholesterol defined as $\geq 0.9 \mathrm{mmol} / \mathrm{l}$ was noted in 13.7% among males and in 11.5% of female respondents. Borderline elevated triglyceride levels were noted in 10.6% of respondents overall.

7.0: LIMITATIONS OF THE SURVEY

Conducting a survey and putting in place a strategy for regular surveys as part of surveillance is expensive and resource intensive. It therefore took long to plan and execute this survey with several changes in design framework and definitions, which appear to occur frequently in this field. Designing a community-based survey such as this one is fraught with difficulties in ensuring representativeness of the sample chosen. In this survey there was a preponderance of female respondents because of the pattern of employment of males and females which also influences urban rural migration.

8.0: CONCLUSIONS

There is a high prevalence of modifiable risk factors of non-communicable diseases in Zimbabwe. Alcohol consumption and tobacco consumption is high especially among males across all provinces. Other lifestyle factors such as overweight and central obesity were noted to be generally high especially among females. The prevalence of both diagnosed and undiagnosed hypertension and diabetes mellitus was found to be high. In this survey the prevalence of abnormal lipids was noted to be significant. In this survey provincial differences in the prevalence and pattern of various risk factors was noted. It is therefore important to identify reasons for such differences so as to develop generalizable principles for the implementation of national intervention strategies.

9.0: RECOMMENDATIONS

Given the emerging database of a significant prevalence of non-communicable diseases risk factors in Zimbabwe a national policy framework needs to be developed to address preventive, control and palliative needs of non-communicable diseases in the country. Tools are now available to collect important risk factors of non-communicable diseases such as was used in this survey and strategies need to be put in place to conduct surveillance of these risk factors in a standardized manner.

10.0: REFERENCES

American Heart Association. Recommendations for Human Blood Pressure Determination for Sphygmomanometers. Dallas:AHA, 1980.

Castle WM. Coronary heart disease risk factors in black and white men in Zimbabwe and the effect of living standards. S Afr Med J 1982; 61:926-9.

Central Statistical Office. Annual Report 1992
Gomo et al. Prevalence of hypertension in three different geographic areas. (in press, 1999).
Gomo et al. Risk factors for CVD in three geographic areas with different degrees of urbanization (in press, 1999).

Matenga JA, Allain TJ, Wilson AO, Adamchek DJ, Senzanje B, Mushangi E and GomoZ. Hypertension management in Zimbabwe-awareness, treatment and blood pressure control. S Afr Med J 1997; 87(10): 1371-3.

Matenga J, Kitai I, Levy L. Strokes among black people in Harare, Zimbabwe: results of computed tomography and associated risk factors. Br Med J 1986; 292:1649-51.

Mudiayi TK, Onyanga-Omara A and Gelman ML. Trends of morbidity in general medicine at united Bulawayo Hospitals, Bulawayo, Zimbabwe. C Afr J Med. 1997; 43(8): 213-4.

Murray CDL and Lopez AD. Global mortality, disability and the contribution of risk factors: Global burden of disease study. Lancet 1997a; 349: 1436-42.

Murray CJL and Lopez AD. Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 1997b; 349: 1269-76.

Murray CDL and Lopez AD. Alternative projections of mortality and disability by cause, 1990-2020: Global burden of disease study. Lancet 1997c; 349:1498-504.

Razum O. Monitoring cardiovascular diseases in Zimbabwe: a review of needs and options. C Afr J Med, 1997; 42(4): 120-4.

Steyn K, Jooste Pl, Bourne L, Fourie J, Badenhorst CJ, Bourne DE, Langenhoven ML, Lombardo CJ, Turter H, Katzenellenbogen J, Marias M and Oelofse A. Risk factors for coronary heart disease in the black population of the cape Peninsula. The Brisk study. S Afr Med J, 1991;79:480-5.

Wilson and Nhiwatiwa, 1992. Does Zimbabwe need geriatric services? Central Afrcian Journal Medince, 1992; 38: 14-6.

Nigel U. Taking poverty to heart Non Communicable diseases and the poor. University of

Newcastle, Department of Diabetes and Epidemiology \& Public Health. March 2001a Insight Health Issue Number 1.

Murray CJL, Lopez AD, eds. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability From Diseases, Injuries and Risk Factors in 1990 and projected to 2020. Cambridge, Mass: Harvard University Press: 1996. Global Burden of Disease and Injury Series: Volume 1.

World Health Organization. World Health Organization Afro region on Non-Communicable Diseases. Regional Strategy for 2000 to 2010. Fact Sheet 28th August-2 September 2000.

Nigel U et al. Theme Papers. Non-Communicable diseases in Sub-Saharan Africa: Where do they feature in health research agenda? Policy and Practice. Bulletin of the World Health Organization. Volume 79. Number 10. Geneva 2001b.

World Health Organization. New WHO Surveillance tool by WHO. The Surf Report 1. May 2003. Geneva.

Setel P et al. Cause-specific adult mortality: evidence from community based surveillanceselected sites, Tanzania, 1992-1998. Morbidity and Mortality Weekly Report, 2000, Volume 49; 416-419.

Fourie J, Steyn K, EDS. Chronic diseases of lifestyle in South Africa. Review of research and identification of essential health research priorities. Cape Town, Medical School Research Council, 1995.

Jadue L. et al. Risk factors for non-communicable diseases: methods and global results of the CARMEN program basal survey.

Bonita R, de Courten M, Dwyer T, Jamrozik K, Winkelmann R. Surveillance of risk factors for noncommunicable disease: The WHO STEPwise approach. Geneva, World Health Ogranization, 2002.

Bonita R, de Courten M, Dwyer T, Jamrozik K, Winkelmann T. Surveillance of risk factors for noncommunicable diseases: The WHO STEPwise approach. Summary. Geneva, World Health Organization. 2001.

World Health Organization. Global strategy for the prevention and control of noncommunicable diseases. Report by the Director General. A53/4. Fifty-third World Health Assembley, May 2000. WHO, Geneva. 2000.

APPENDIX: Zimbabwe Non-Communicable Disease Survey (ZiNCoDS) Questionnaire

Demography and Health History Questionnaire

Questionnaire checked in the field by:
Name. \qquad Signature \qquad Date Team Leader

Name. \qquad Signature \qquad Date \qquad Provincial Supervisor

DEMOGRAPHIC DATA

6. What is your main occupation (Munoita basa rei?) Specify \qquad	1. Informal 2. Formal skilled 3. Housewife 4. Not employed 5. Student 6. Others	(If 3, 4 and 5 Go to Q8)
7. What is your monthly Income? (Munowana /munotambira marii pamwedzi?)		\$.
8. Additional/Other sources of income $\$$ \qquad per Imarii yamunowana nedzimwe nzira pamwedzi?		

Tobacco Use

9. Do you currently smoke or use any tobacco products, such as cigarettes, cigars, pipes, snuff, chew tobacco? Munoputa fodya here?	1. Yes 2. No (Go to Q13)
10. If yes, Do you currently smoke tobacco products only? such as cigarettes, cigars or pipes and not snuff or chew tobacco Munoputa fodya chete here?	$\begin{aligned} & \text { 1. Yes } \\ & \text { 2. No } \end{aligned}$
11. How old were you when you first started smoking or using tobacco regularly? Makatanga kuputa fodya zuva nezuva muine makore Mangani?	Code 99 if doesn't remember
12. On average, how many of the following 1. Manufactur do you smoke each day? Munoputa fodya ngani pazuva dzemhando idzi? 2. Hand-rolle Chimonera (Code 99 for don't know) 3. Pipe filling Chikwepa	ed cigarettes \square ga cigarettes \square of tobacco \square
EXPANDED: TOBACCO USE	
13a. If not currently a smoker-In the past, did you ever smoke regularly? Munguva yapfuura maimboputa fodya mazuva ose here?	1. Yes 2. No (Go to Q16)
13b. If yes How old were you when you stopped smoking regularly? Maiva nemakore mangani pamakagumisira kuputa mazuva ose?	Code 99 if doesn't remember

ALCOHOL CONSUMPTION (SECTION A)

In this section we shall ask you questions about alcohol consumption.
(Muchikamu chino tichakubvunzai nezve kumwa doro/hwahwa)

16a. Have you ever consumed a drink that contains alcohol such as beer, wine, spirit, fermented cider, etc? Makambonwa zvinodhaka zvakaita sedoro, waini, tototo here?	1. Yes 2. No (Go to Q19)	
16b. Have you consumed alcohol within the past 12 months? Makambonwa zvinodhaka pamwedzi gumi nemiviri yapfuura?	1. Yes 2. No (Go to Q19)	
17. In the past 12 months, how frequently have you had at least one drink? (Read responses) Mumwedzi gumi nemiviri yapfuura , kangani kamakambonwa zvinodhaka kamwechete kana kupfuura?	1. 5 or more days per week 2. 1 - 4 days/week 3. 1-3 days/month 4. Les than once month	
18. During each day of the past 7 days, how many standard drinks of any alcoholic drink did you have each day? Pamazuva manomwe apfuura makanwa doro rakawanda zvakadiii pazuva roga roga? (code 99 for don’t know)	1. Monday 2. Tuesday 3. Wednesday 4. Thursday 5. Friday 6. Saturday 7. Sunday	
DIET		
In this section we are going to ask you questions about fruits and vegetables that you usually eat. Muchikamu chino tichakubvunzai pamusoro pemichero nemirivo yamunowanzodya		
19a. In a typical week, how many days do you eat fruit? Munodya michero mazuva mangani pasvondo?	Number of days	
19b. How often do you eat fruits per day? Munodya michero kangani pazuva?	Number of servings	

20a. In a typical week, on how many days do you eat vegetables? Munodya muriwo mazuva mangani pasvondo?	Number of days	
20b. How often do you eat vegetables per day? Munodya muriwo kangani pazuva?	Number of servings	
EXPANDED: DIET		
21. Are your meals usually prepared at home? Kudya kwenyu kunobikwa pamba penyu here?	$\begin{array}{\|ll\|} \hline \text { 1.Yes } & \square \\ \text { 2. No } & \\ \hline \end{array}$	
22. What type of oils or fat is most often used for meal preparation in your household? Munonyanyoshandisa mhando ipi yemafuta pakubika? (code 99 for don't know)	1. Vegetable oil 2. Lard 3. Butter 4. Margarine 5. Peanut butter 6. None in particular 7. None used 8. Other Specify \qquad	
PHYSICAL ACTIVITY		
I am going to ask you about the time you spend doing different types of physical activity. Please answer these questions even if you do not consider yourself to be an active person. Think first about the time you spend doing work. Think of work as the things that you have to do such as paid or unpaid work, household chores, digging, harvesting food, fishing or hunting for food, seeking employment. Iyezvino tavekuzokubvunzai mashandisire amunoita nguva yenyu kana muchiita basa.		
23. Does your work involve mostly sitting or standing, with walking for no more that 10 minutes at a time? Basa ramunoita rinonyanyoitwa makagara here kana kumira pasina kufamba famba kwemaminitsi asinga pfuuri gumi panguva yega yega?	$\begin{aligned} & \text { 1. Yes } \\ & \text { 2. No } \end{aligned}$	\square
24. Does your work involve vigorous activity, like (heavy lifting, digging or construction work) for at least 10 minutes at a time? Munoita basa rakaomarara here rakafanana nukusimudza zvinorema, kuchera kana kuvaka kwemaminitsi gumi kana kupfuura panguva yoga yoga?	$\begin{aligned} & \text { 1. Yes } \\ & \text { 2. No } \end{aligned}$	
25a. In a typical week, on how many days do you do vigorous activities as part of your work? Mazuva mangani pasvondo amunoita basa rakaomarara?	Days a week	

| panguva yenyu yekuzorora | | |
| :--- | :--- | :--- | :--- |
| 31b. How much time do you spend doing this (vigorous
 activities) on a typical day?
 Munozviita kwenguva yakareba zvakadini pazuva? | In hours and minutes | |

The following question is about sitting or reclining. Think back over the past 7 days, to the time spent at work, at home, in leisure, including time spent sitting at a desk, visiting friends, reading, or watching television, but do not include time spent sleeping.
Iye zvino tava kuda kukubvunzai nezvamunoita makazorora.
34. Over the past 7 days, how much time did you spend sitting or reclining on a typical day?
Pamazuva manomwe apfuura, makapedza nguva yakadini makagara muchizorora pasina zvamuri kuita?

In hours and minutes
HH MM

EXPANDED: HISTORY OF HIGH BLOOD PRESSURE

Now we are going to ask you questions about your history of blood pressure. Tave kukubvunzai nezveblood pressure yenyu?
35. When was your blood pressure last measured by a health professional?
Makapedzisira rinhi kutorwa BP yenyu kuchipatara kana kwachiremba?

1. Within past 12 months 2. 1-5 years ago 3. Not within past 5 years 4. Never had my blood pressure checked before

36. During the past 12 months have you been told by a doctor or other health worker that you have elevated blood pressure or hypertension?	1. Yes
Mumwedzi gumi nemiviri yapfuura, makambotaurirwa here kuti BP yenyu yakakwira nachiremba kana mukoti here?	2. No (Go to Q40)

Now we are going to ask you questions about treatments for high blood pressure prescribed by a doctor or other health worker Iyezvino tave kukubvunzai nekurapwa kweBP yenyu.		
37a. Have you been taking any drugs in past 2 weeks Pamasvondo maviri apfuura mange muri kutora mushonga we BP here?	1. Yes 2. No	2.
37b. Have you been on any special prescribed diet including salt reduction? Murikudya zvekudya zvamakanzi munofanira kudya here	1. Yes kusanganisira kudya munyu mushoma?	2. No

Are you currently receiving any of the following treatments for diabetes prescribed by a doctor or other health worker?

46. (For women) Are you pregnant?	1. Yes (Don't measure waist and HIP circumference go to Q49) 2. No
47. Waist circumference (to nearest 0.1 cm)	In centimetres

