Central Data Catalog

Citation Information

Type Journal Article - International Journal of Environmental Research and Public Health
Title Greywater Disposal Practices in Northern Botswana—The Silent Spring?
Author(s)
Volume 12
Issue 11
Publication (Day/Month/Year) 2015
Page numbers 14529-14540
URL http://www.mdpi.com/1660-4601/12/11/14529/htm
Abstract
Disposal of greywater is a neglected challenge facing rapidly growing human populations. Here, we define greywater as wastewater that originates from household activities (e.g., washing dishes, bathing, and laundry) but excludes inputs from the toilet. Pollutants in greywater can include both chemical and biological contaminates that can significantly impact human, animal, and environmental health under certain conditions. We evaluate greywater disposal practices in nonsewered, low-income residential areas in Kasane (264 dwellings/ha), Kazungula (100 du/ha), and Lesoma (99 du/ha) villages in Northern Botswana through household surveys (n = 30 per village). Traditional pit latrines were the dominant form of sanitation (69%, n = 90, 95% CI, 59%–79%) while 14% of households did not have access to onsite sanitation (95% CI 0%–22%). While greywater disposal practices varied across villages, respondents in all sites reported dumping greywater into the pit latrine. Frequency varied significantly across villages with the highest level reported in Kasane, where residential density was greatest (p < 0.014, χ2 = 9.13, 61% (n = 23, 95% CI 41%–81%), Kazungula 41% (n = 22, 95% CI 20%–62%), Lesoma 13% (95% CI 0%–29%). Disposal of greywater in this manner was reported to limit contamination of the household compound and reduce odors, as well as pit latrine fecal levels. Some respondents reported being directed by local health authorities to dispose of greywater in this manner. Environmentally hazardous chemicals were also dumped directly into the pit latrine to reduce odors. With high household to pit latrine ratios particularly in rental properties (4.2 households, SD = 3.32, range = 15 units, average household size 5.3, SD = 4.4), these greywater and pit latrine management approaches can significantly alter hydraulic loading and leaching of chemicals, microorganisms, and parasites. This can dramatically expand the environmental footprint of pit latrines and greywater, increasing pollution of soil, ground, and surface water resources. Challenges in greywater disposal and pit latrines must be addressed with urgency as health behaviors directed at minimizing negative aspects may amplify the environmental impacts of both greywater and pit latrine excreta.

Related studies

»
Alexander, Kathleen A, and Adil Godrej. "Greywater Disposal Practices in Northern Botswana—The Silent Spring?." International Journal of Environmental Research and Public Health 12, no. 11 (2015): 14529-14540.
Powered by NADA 4.0 and DDI