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The NIDS weights were derived in two stages. In the first, the design weights were calculated
as the inverse of the inclusion probability. In the second, the weights were calibrated to the 2008
midyear estimates. In practice the process was a bit more complicated so there are not just two sets
of weights available. In this document we set out how the weights were calculated and what choices
were necessary in the process.

1 Calculating the design weights

The theoretical formula for calculating design weights is straightforward: the Horvitz-Thompson
estimator (1952) is given by

wi =
1

πi

where wi is the weight and πi is the inclusion probability of the i-th unit. We therefore need to be
able to calculate πi. This means taking account of the two-stage sampling design: first drawing a
sample of PSUs and then drawing a sample of dwellings within them.

1.1 The probability of including a PSU

In principle the calculation of the probability of a PSU being selected is quite simple, it is the
probabability of the PSU appearing in the master sample (supplied by Statistics South Africa) times
the probability of being drawn from that master sample. The problem is that nine PSUs that were
drawn were not visited at all and were replaced. This implies that the probability of a PSU appearing
in the NIDS sample conditional on it being in the master sample is now given by:

πPSUj = Pr (PSU j is selected) ∗ Pr (fieldwork is possible) +X
k 6=j

Pr (PSU k is selected) ∗ Pr (fieldwork is not possible in k) ∗

Pr (PSU j is selected as replacement for k) + . . .

(The dots signal that there should be a third and higher-order replacement terms also, given that
there is a non-zero probability of fieldwork not happening in a replacement PSU.) There are a
number of imponderables in this. Firstly what is the probability of fieldwork being possible in a
particular area? If we treat this as a stochastic variable then we need to recalculate the inclusion
probabilities even for PSUs that were not replaced, since presumably the ex post discovery that
fieldwork was possible does not mean that the ex ante probability of this event was one. So how might
we get estimates of Pr (fieldwork is possible)? One approach is to estimate this given the available
information: geography type, location, average household size, predominant “race” group. It turns
out that this is not quite so straightforward, because within certain categories (e.g. urban informal,
several of the provinces) no replacement ever took place, so the best estimate of the probability
is, in fact, one. Within the areas where the outcome did vary the available information does not
predict the outcome very well (the coefficients in a probit turn out to be all insignificant). The
simplest procedure might therefore be to assign fieldwork difficulties entirely to “geography”, e.g.
calculate the fraction of PSUs that needed to be replaced within a district council and use that as
the probability that fieldwork is not possible.

The second difficulty is that we have no information about Pr (PSU j is selected as replacement for k).
The most tractable assumption is to assume that the second draw is made randomly within the dis-
trict council. If we also assume that Pr (fieldwork is not possible in k) is constant within district,
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then the formula for selection becomes

πPSUj = Pr (PSU j is selected) ∗ Pr (fieldwork is possible) +⎛⎝X
k 6=j

Pr (PSU k is selected)

⎞⎠ ∗ Pr (fieldwork is not possible) ∗
Pr (PSU j is selected as replacement) + . . .

Indeed since draws within the district council are made with equal probability, it turns out that these
probabilities must all be equal within district councils, so we could effectively ignore the replacement
procedure and proceed as though all our PSUs were selected at the beginning. Of course this is valid
only if the replacement PSUSs were really drawn at random and if the probability of fieldwork being
possible is constant within district councils.

If Pr (PSU j is selected as replacement) is not random, e.g. if there is any matching on the
characteristics of the area, then we would need to to know for how many other PSUs a given one is
the best match and we would need to know the probability of selection and probability of fieldwork
within those. Calculating these probabilties is not possible given the information to hand.

A different approach would be to “undo” the replacement procedure. If replacement hadn’t
happened, then the probability of inclusion is just

πPSUj = Pr (PSU j is selected) ∗ Pr (fieldwork is possible)

Assuming again that Pr (fieldwork is possible) is constant within district council, we can estimate
this probability. The resulting weights essentially “weight up” the observed PSUs within the district
council to compensate for the missing ones.

In summary there are two approaches:

• weight PSUs as though Pr (fieldwork is possible) is constant within district council and replace-
ment happened at random

The resulting weights can be thought of as weights ignoring the problem of replacement

• weight PSUs as though Pr (fieldwork is possible) is constant within district council and replace-
ment never occurred, i.e. weight replaced PSUs at zero

1.2 The probability of interviewing a household

Within PSUs twenty-four (or forty-eight) dwellings where extracted from a listing of dwellings com-
piled in 2006. This means, in effect, that people living in dwellings constructed on greenfields sites
since then have a zero probability of appearing in the sample. Dwellings that have become vacant
introduce a further complication. Obviously no interview is possible from such a site. Once an occu-
pied dwelling has been visited, the household(s) present there have to consent to being interviewed.
The probability of a household in a sampled PSU being interviewed is therefore

πh = Pr (participation|hh selected) ∗
Pr (hh selected|occupied dwelling selected) ∗ (1)

Pr (occupied dwelling selected|PSU selected)

The final term in this expression would be easy to calculate if we knew how many occupied
dwellings there were in the PSU, but we don’t. One approach would be to rewrite this expression as

Pr (occupied|dwelling selected) Pr (dwelling selected)
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To make this more concrete assume that there are Nc dwellings listed within the cluster, that we
extracted a sample of size 24 and that there were no occupied dwellings. This formula would suggest
that

Pr (occupied dwelling selected|PSU selected) = no
24
∗ 24
Nc

=
no
Nc

This approach assumes that the universe within which we are operating is that of all dwellings, instead
of that of occupied dwellings. Implicitly we would be assuming that the occupied dwellings would
have to proxy for the vacant ones. That might be a valid approach if the households in the vacant
plots had built new structures somewhere else, i.e. the vacant plot is a type of missing household.

A different approach is to assume that there really isn’t a household corresponding to the vacant
plot somewhere outside the coverage of the survey. In that case we need an estimate of the number
of occupied dwellings within the cluster. The most straightforward estimate is

Noc = Nc ∗
³no
24

´
Then the probability of a particular occupied dwelling being selected from all the occupied dwellings
in the cluster is

Pr (occupied dwelling selected|PSU selected) = no
Noc

=
24

Nc

This is, in fact, the approach that was adopted.
The middle term in equation 1 is supposedly one, so this creates no problems. The first term

again creates difficulties. There is no information on households that refuse to participate, so the
easiest procedure is to assume that this probability is constant across all households within the PSU.
We can estimate this probability as the fraction of participating households over the total number
of households within the sample of occupied dwellings. In the available data it is the number of
households observed in the sample divided by “countDUs”.

1.3 Trimming the weights

In a final step the weights were “trimmed” to reduce the influence of a few households with very large
weights. These arose in PSUs in which only one or two households were interviewed. The weights
were trimmed to the 95th percentile of the weights.
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2 Calibrating the weights

2.1 Why post-stratify?

Post-stratification involves adjusting the weights of a survey so that the application of those weights
makes the sample look like the population, e.g. in terms of its distribution across provinces and demo-
graphic characteristics. There is no intrinsic reason why a random sample should look representative
of the population. Sampling theory allows us to place bounds on that variability. The attraction
of post-stratification is that it can reduce that variability further provided that the attributes that
we are trying to measure are correlated with characteristics we are using to post-stratify on. So,
for instance, if the probability of employment is strongly related to geographical factors, then down-
weighting over-represented provinces and weighting up under-represented ones should give us a more
accurate measure of employment than simply ignoring the lopsided nature of the sample. Adding
in additional information from outside the survey can therefore improve the accuracy of measures
provided that this auxiliary information is itself accurate.

The particular reason for wanting to post-stratify the NIDS survey becomes apparent in Table 1.
The last line of that table shows that the NIDS sample has 35% too few Indians and 17% too few
Whites. The entries within the table show that there are certain age groups that are prone to be
overrepresented (in particular the elderly), while young adults (25 to 29 year olds in particular) are
significantly underrepresented.

Table 1: Percentage difference between NIDS sample and Midyear population estimates
Age band AM AF CM CF IM IF WM WF

0-4 10.0% 3.0% 12.4% 1.8% -27.8% -10.6% -9.8% -13.7%
5-9 -6.9% -11.3% 16.6% -1.6% 1.7% -25.2% -3.5% 8.4%

10-14 3.8% -8.5% 20.8% 23.3% 30.9% 40.6% -9.1% 6.1%
15-19 0.1% 1.5% -4.0% 22.5% 62.0% 18.6% 20.0% -29.8%
20-24 -9.6% 11.3% -2.2% -1.0% 7.7% 25.7% -25.1% 11.4%
25-29 -10.2% -16.6% -1.1% -12.2% -76.1% -47.9% -27.2% -44.0%
30-34 -17.5% -23.6% -36.7% -38.6% -28.9% -38.2% 32.8% 4.2%
35-39 -17.9% -3.9% -31.5% 1.2% 49.8% -31.2% 0.3% 9.5%
40-44 26.1% 19.0% 0.5% -2.5% 17.2% 100.3% -15.0% 13.4%
45-49 7.7% 10.2% 4.4% 28.3% -50.8% 10.4% 21.6% 13.3%
50-54 26.2% 10.0% -17.6% -3.1% 0.2% -3.0% -0.6% 29.3%
55-59 21.0% 16.0% 5.3% -15.7% 64.3% 10.5% -6.4% -12.3%
60-64 -0.1% -0.4% 14.8% -21.0% -15.4% 28.1% 2.2% 7.8%
65-69 26.5% 25.4% -6.0% -12.9% -30.2% -60.7% -14.6% -1.2%
70-74 -1.3% 21.8% 11.6% 4.2% -11.5% -73.0% 19.5% 46.8%
75-79 39.0% 78.2% 316.6% 55.5% -92.3% 60.3% 40.0% -17.6%
80+ 169.3% 122.4% -13.3% -40.3% 191.9% -94.8% 53.4% -64.4%
Total -1.3% 5.8% 3.2% 9.1% -37.9% -31.9% -20.4% -13.8%

NIDS estimates calculated using the design weights.
A: African C: Coloured I: Indian W: White; M: Male F: Female

2.2 How the calibration was done

2.2.1 The constraints

The sample weights were adjusted so that the resident NIDS population conformed to the age-sex-
race distribution of the 2008 midyear population estimates released by Statistics South Africa. A
separate constraint was that the distribution by provinces should correspond to that released in those
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population estimates and that the total weights should add up to the estimated total population of
48,687,000. A further constraint imposed was that the weights should be constant within households.
This is based on the assumption that the mismatch is due to the fact that we disproportionately
missed certain types of households, rather than that we disproportionately underenumerated partic-
ular age groups within the households that we found.

In order to implement these constraints we needed to decide how to deal with individuals where
the age, sex or race was missing. These were all allocated to a residual category. We imposed the
condition that the proportionate weight of these individuals (around 1.4% of the sample) should not
change due to the reweighting.

2.2.2 The technique

Weights adjustments are often done by a “raking” procedure, i.e. the ex-ante weights (in this case
the design weights) are scaled up or down to make the weights sum up to one of the constraints (e.g.
the age-sex-race counts), then rescaled to fit the second constraint (provincial totals), then back to
the first until all constraints are met.

Instead we calculated the post-stratified weights by the “cross-entropy” estimation procedure
(Golan, Judge and Miller 1996, p.29). The idea is to minimise the cross-entropy measure

nX
i=1

pi ln
pi
qi

where pi is the set of weights to be chosen (one for each individual) and qi is the set of ex-ante weights
(rescaled to sum to one). We used the original design weights and not the trimmed ones, since these
weights would get rescaled through the procedure anyhow. The minimisation is done subject to the
set of constraints imposed on the problem, i.e.

nX
i=1

pi = 1

yj =
nX
i=1

xijpi

In our case yj is a particular population proportion (e.g. the proportion of people in the Western
Cape is 0.10803) and xij is a dummy variable indicating whether the i-th individual in the data set is
in the Western Cape or not. Altogether there are 146 of these constraints: 9 provincial proportions,
136 age-sex-race proportions plus the proportion “missing”. Two of these constraints are redundant,
since the province proportions add up to unity, as do the age-sex-race plus “missing” proportions.

It is relatively straightforward to show that the cross-entropy solution is equivalent to the solu-
tion that would be obtained by rescaling the proportions iteratively until convergence is achieved
(Wittenberg 2009b). In a sense the weights pi are those as close to the original weights qi as possible,
while obeying all the constraints.

The set of weights pi obtained through the cross-entropy estimation were converted to “raising
weights” by multiplying them by the population total 48,687,000 as given in the mid-year population
estimates. The distribution of the NIDS sample when reweighted with these weights is shown in
Table 2. The total in that table is 48,024,624 which is 1.36% below the figure of 48,687,000 due to
individuals with missing age, gender or race information. The program used to calculate the weights
is available (Wittenberg 2009a).
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Table 2: Counts in each Age-Sex-Race cell when applying the post-stratified weights
Age band AM AF CM CF IM IF WM WF

0-4 2,184,175 2,127,655 208,425 205,861 47,939 46,755 126,554 122,510
5-9 2,232,213 2,177,862 209,017 206,748 45,670 44,486 135,333 131,289

10-14 2,220,770 2,175,396 207,340 205,170 50,898 49,813 151,017 146,677
15-19 2,142,746 2,109,505 201,323 200,337 53,956 53,167 163,150 158,415
20-24 1,935,012 1,980,287 185,935 190,670 58,789 56,718 157,330 153,878
25-29 1,711,001 1,825,818 180,116 192,051 61,354 57,901 140,660 139,082
30-34 1,496,756 1,610,685 184,160 198,463 52,673 50,997 133,952 132,571
35-39 1,080,695 1,292,967 167,983 185,146 43,697 43,993 145,691 144,211
40-44 722,337 927,113 138,884 156,541 39,456 40,738 166,898 165,418
45-49 669,368 867,929 119,847 136,320 36,990 38,371 169,068 172,126
50-54 566,783 743,742 93,609 108,997 33,242 35,116 164,432 170,449
55-59 442,300 583,946 68,160 83,153 28,606 31,269 151,116 158,218
60-64 337,742 458,279 47,051 61,058 21,898 25,153 134,051 146,381
65-69 241,075 351,453 30,578 43,895 14,500 18,248 98,541 114,619
70-74 154,568 252,714 19,235 32,946 8,779 12,724 63,425 84,140
75-79 85,816 158,316 9,864 20,320 4,833 8,187 35,609 59,973
80+ 52,575 120,833 5,622 14,796 3,058 6,609 29,592 71,612
Total 18,275,931 19,764,500 2,077,151 2,242,471 606,337 620,246 2,166,420 2,271,569
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