Value |
Category |
101 |
KALANGALA |
102 |
KAMPALA |
103 |
KIBOGA |
104 |
LUWERO |
105 |
MASAKA |
106 |
MPIGI |
107 |
MUBENDE |
108 |
MUKONO |
109 |
NAKASONGOLA |
110 |
RAKAI |
111 |
SSEMBABULE |
112 |
KAYUNGA |
113 |
WAKISO |
114 |
LYANTONDE |
115 |
MITYANA |
116 |
NAKASEKE |
117 |
BUIKWE |
118 |
BUKOMANSIMBI |
119 |
BUTAMBALA |
120 |
BUVUMA |
121 |
GOMBA |
122 |
KALUNGU |
123 |
KYANKWANZI |
124 |
LWENGO |
201 |
BUGIRI |
202 |
BUSIA |
203 |
IGANGA |
204 |
JINJA |
205 |
KAMULI |
206 |
KAPCHORWA |
207 |
KATAKWI |
208 |
KUMI |
209 |
MBALE |
210 |
PALLISA |
211 |
SOROTI |
212 |
TORORO |
213 |
KABERAMAIDO |
214 |
MAYUGE |
215 |
SIRONKO |
216 |
AMURIA |
217 |
BUDAKA |
218 |
BUDUDA |
219 |
BUKEDEA |
220 |
BUKWO |
221 |
BUTALEJA |
222 |
KALIRO |
223 |
MANAFWA |
224 |
NAMUTUMBA |
225 |
BULAMBULI |
226 |
BUYENDE |
227 |
KIBUKU |
228 |
KWEEN |
229 |
LUUKA |
230 |
NAMAYINGO |
231 |
NGORA |
232 |
SERERE |
301 |
ADJUMANI |
302 |
APAC |
303 |
ARUA |
304 |
GULU |
305 |
KITGUM |
306 |
KOTIDO |
307 |
LIRA |
308 |
MOROTO |
309 |
MOYO |
310 |
NEBBI |
311 |
NAKAPIRIPIRIT |
312 |
PADER |
313 |
YUMBE |
314 |
ABIM |
315 |
AMOLATAR |
316 |
AMURU |
317 |
DOKOLO |
318 |
KAABONG |
319 |
KOBOKO |
320 |
MARACHA |
321 |
OYAM |
322 |
AGAGO |
323 |
ALEBTONG |
324 |
AMUDAT |
325 |
KOLE |
326 |
LAMWO |
327 |
NAPAK |
328 |
NWOYA |
329 |
OTUKE |
330 |
ZOMBO |
401 |
BUNDIBUGYO |
402 |
BUSHENYI |
403 |
HOIMA |
404 |
KABALE |
405 |
KABAROLE |
406 |
KASESE |
407 |
KIBAALE |
408 |
KISORO |
409 |
MASINDI |
410 |
MBARARA |
411 |
NTUNGAMO |
412 |
RUKUNGIRI |
413 |
KAMWENGE |
414 |
KANUNGU |
415 |
KYENJOJO |
416 |
BULIISA |
417 |
IBANDA |
418 |
ISINGIRO |
419 |
KIRUHURA |
420 |
BUHWEJU |
421 |
KIRYANDONGO |
422 |
KYEGEGWA |
423 |
MITOOMA |
424 |
NTOROKO |
425 |
RUBIRIZI |
426 |
SHEEMA |
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.