IHSN Survey Catalog
  • Home
  • Microdata Catalog
  • Citations
  • Login
    Login
    Home / Central Data Catalog / IND_2018-2019_PHSSB_V01_M
central

Public Health System Survey in Bihar 2018-2019

India, 2018 - 2019
Get Microdata
Reference ID
IND_2018-2019_PHSSB_v01_M
Producer(s)
Development Research Group
Metadata
DDI/XML JSON
Created on
Jan 16, 2021
Last modified
Jan 16, 2021
Page views
730
Downloads
358
  • Study Description
  • Downloads
  • Get Microdata
  • Identification
  • Coverage
  • Producers and sponsors
  • Sampling
  • Data collection
  • Access policy
  • Data Access
  • Disclaimer and copyrights
  • Metadata production
  • Identification

    Survey ID number

    IND_2018-2019_PHSSB_v01_M

    Title

    Public Health System Survey in Bihar 2018-2019

    Country
    Name Country code
    India IND
    Study type

    Other Household Health Survey [hh/hea]

    Abstract

    What do we know about incentives and norms in health bureaucracies and service delivery points at various levels of a state in India? For example, the logic of economic theory suggests that governments should be direct providers of services when there is a role for attracting intrinsically motivated agents (Francois, 2000), but we have no empirical evidence on integrity and public service motivation among state personnel across different cadres of service delivery. The available research has focused on documenting evidence of weak incentives and low accountability for service delivery in the public sector, and thence on evaluating interventions targeted at strengthening incentives, such as making some part of pay conditional on performance indicators (for example, Singh and Masters, 2017). But what is available is barely scratching the surface of knowledge needed to help reform leaders think about how to structure government bureaucracies and assign tasks to leverage intrinsic motivation and to reduce reliance on high-powered incentives. Even when increasing the power of incentives has been shown to “work”, the authors of those findings concede that implementing optimal incentive contracts at scale can place significant demands on state capacity (Muralidharan and Sundararaman, 2011). There is even less evidence available about the incentives and motivation of mid-level bureaucrats within the health system, compared to a growing body of research on frontline providers such as doctors and community health workers. Finally, the logic of economic theory, and growing international evidence in support of it, further suggests that politics casts a long shadow on culture in the bureaucracy, but we have no rigorous evidence for this claim for India.

    To address these knowledge gaps we designed and implemented a complex survey of multiple types of respondents across districts, blocks (administrative sub-units within districts) and village governments (Gram Panchayats or GPs) in Bihar, one of the poorest states of India and with some of the worst statistics of child malnourishment.

    Kind of Data

    Sample survey data [ssd]

    Unit of Analysis

    Households
    Health Staff
    Politicians
    Bureaucrats

    Coverage

    Geographic Coverage

    16 study districts, from among the 38 of Bihar, selected to represent the 9 administrative divisions of Bihar: Patna, Tirhut, Darbhanga, Kosi, Purnia, Saran, Bhagalpur, Munger, Magadh

    Geographic Unit

    District

    Universe

    Citizens,
    Within the category of citizens, the survey additionally targeted office-bearing members of women’s Self Help Groups (SHG) under a rural livelihoods program in Bihar known as Jeevika.
    Politicians
    Bureaucrats
    Public Providers of Health Services

    Producers and sponsors

    Primary investigators
    Name Affiliation
    Development Research Group The World Bank
    Producers
    Name
    Georgetown University

    Sampling

    Sampling Procedure

    Budget and implementation constraints required us to select a sample of districts rather than covering all 38 districts of Bihar. At the same time, we needed a large sample to be representative of the diversity within the state, and allow us to capture some variation across district-level institutional characteristics. These constraints led us to determine 16 as the number of districts in which to undertake the survey. The purposive selection of which 16 study districts, from among the 38 of Bihar, was made using the following criteria:

    • represent the 9 administrative divisions of Bihar: Patna, Tirhut, Darbhanga, Kosi, Purnia, Saran, Bhagalpur, Munger, Magadh
    • represent both border and interior districts
    • select "old" and "new" districts (those which were created after 1991) because district age might matter in interesting ways for their capacity to deliver (to be discussed further)
    • select districts which might vary in historical institutions that shape norms.

    We first explored an established literature in India which finds that there are persistent effects on current service delivery of the long-gone historical institution of the Zamindari system of land revenue (Pandey, 2010; Banerjee and Iyer, 2005). However, since all of the districts of Bihar are classified as belonging to the Zamindari system, we could not use this established measure of historical institutions in selecting the study districts. We then turned to a newer literature which examines the early construction of railway lines in the late 1800s in the United States and India as a potential source of institutional variation (Donaldson, 2018; Donaldson and Hornbeck, 2016; Atack, Haines and Margo, various). The 16 districts in our study include those through which passed the first railway lines in Bihar, and those that received railway lines a decade or so later.

    Within each of the 16 districts, 4 blocks were selected using a random number generator,after stratifying by proximity to the main railway line. Within each block, 4 Gram Panchayats (GPs) were selected using a random number generator. However, in one block each in the districts of Lakhisarai and Buxar, 3 GPs instead of 4 were selected because the sampling protocol required a sufficient number of replacement respondents to be available, and these districts only had 3 GPs fulfilling the replacement requirement (more details in section on Respondents below). This yields a sample of respondents drawn from 16 districts, 64 blocks from within those districts, and 254 Gram Panchayats (GPs) from within those blocks.

    Citizen Survey: The citizen survey was aimed at respondents from 16 households residing in each GP area. The survey firm was provided with a list of respondents (with replacements) drawn randomly from the electoral rolls available of all voting-age adults in Bihar's population. The target sample size is thus 4064 citizens (16 each from 254 GPs). Within the category of citizens, the survey additionally targeted office-bearing members of women's Self Help Groups (SHG) under a rural livelihoods program in Bihar known as Jeevika. However, we had no lists available with names of SHG leaders of the village-level organziations across GPs. In the absence of these lists, we relied on the survey firm to ensure that enumerator teams would identify SHG leaders during their field-work. The data from SHG leaders that has been provided to us is thus subject to a greater than usual caveat: the risk of whether the enumerator teams accuratelyidentified and obtained interviews with the targeted SHG respondents. The instructions provided to the survey teams was to ask the GP Mukhiya and other GPlevel respondents (such as the ANM, ASHA and AWW) about the GP-level federated organzation of all the SHGs across the GP's communities to identify its President,Secretary and Treasurer. That is, 3 SHG leaders were targeted for each GP, for a total sample of 762 (3 each from 254 GPs) SHG leaders.

    Politician Survey: Lists were provided to the survey teams of all incumbent Mukhiyas to be interveiwed, and a random selection (with replacement) of 3 Ward members and 3 candidates from among those who contested the previous GP elections of 2016. The targeted sample size of GP politicians is thus 1778 (7 each from 254 GPs)

    Bureaucrats: The survey firm was responsible for identifying and interviewing the respondents holding these positions. The final data submitted by the survey firm contains 293 respondents in supervisory or management positions, including: 13 Civil Surgeons,11 Chief Medical Officers (including 4 who were in Acting capacity), 23 Superintendents (including 13 in Deputy or Acting capacity), 9 District Programme Officers- NHM, 4 District RCH and Immunization In-charge, 7 District Community Mobilizers, 58 MOICs, 58 Acting Facility Incharge, 43 Block Program Managers-NHM, 29 Block RCH Programme officers, and 35 Block Community Mobilizers.

    Public Providers of Health Services: The survey team was provided a list (with replacements) of 3 AWW workers to interveiw per GP, for a targeted sample of 762 AWW respondents. The survey team was provided with a list of randomly selected candidates for the categories of respondents for all the PHCs and higher-level health facilities (such as District Hospitals) across the 64 blocks of the study area.

    Deviations from the Sample Design

    Block Level: The survey firm was responsible for identifying the block-level politicians targeted to be interviewed. The targeted sample size of Block-Panchayat (Panchayat Samiti) elected members’ is 128 respondents (2 each from 64 blocks). The 57 MLAs across the 64 blocks of the study area were also identified by the survey firm. However, because of problems of reaching politicians at a time that was close to the 2019 elections in India, the survey firm was able to complete interviews with only 39 MLAs (of the targeted 57) , and with 119 Panchayat Samiti members (of the targeted 128).

    District Level: The survey firm was responsible for identifying the MPs from constituencies within the 16 study districts, and the 32 respondents of the District-Panchayat (Zilla Parishad). Again, because of problems reaching political leaders at election time, the survey firm was able to interviewonly 9 MPs, and 28 Zilla Parishad members.

    Public Providers of Health Care Services: The survey team was provided with a list of randomly selected candidates for the categories of respondents for all the PHCs and higher-level health facilities (such as District Hospitals) across the 64 blocks of the study area. However, the survey team reports substantial difficulty in adhering to this list because the personnel were not found at the health facilities. The survey team was not able to reach a random sample of providers appointed at these positions.

    Data collection

    Dates of Data Collection
    Start End Cycle
    2018-11 2018-12 Phase 1
    2019-02 2019-03 Phase 2
    Data Collectors
    Name
    Cicero Associates
    Data Collection Notes

    Within the category of citizens, the survey additionally targeted office-bearing members of women’s Self Help Groups (SHG) under a rural livelihoods program in Bihar known as Jeevika. However, we had no lists available with names of SHG leaders of the village-level organziations across GPs. In the absence of these lists, we relied on the survey firm to ensure that enumerator teams would identify SHG leaders during their field-work. The data from SHG leaders that has been provided to us is thus subject to a greater than usual caveat: the risk of whether the enumerator teams accurately identified and obtained interviews with the targeted SHG respondents.

    Access policy

    Archive where study is originally stored

    https://sites.google.com/view/stutikhemani/public-health-systems-survey?authuser=0

    Data Access

    Citation requirements

    Use of the dataset must be acknowledged using a citation which would include:

    • the Identification of the Primary Investigator
    • the title of the survey (including country, acronym and year of implementation)
    • the survey reference number
    • the source and date of download

    Example:
    Development Research Group (The World Bank). India- Public Health System Survey in Bihar (PHSSB) 2018-2019. Ref: IND_2018-2019_PHSSB_v01_M. Downloaded from [url] on [date].

    Disclaimer and copyrights

    Disclaimer

    The user of the data acknowledges that the original collector of the data, the authorized distributor of the data, and the relevant funding agency bear no responsibility for use of the data or for interpretations or inferences based upon such uses.

    Metadata production

    DDI Document ID

    DDI_IND_2018-2019_PHSSB_v01_M_WB

    Producers
    Name Affiliation Role
    Development Economics Data Group World Bank Group Documentation of the Study
    Date of Metadata Production

    2020-03-30

    Metadata version

    DDI Document version

    Version 01 (March 2020)

    Back to Catalog
    IHSN Survey Catalog

    © IHSN Survey Catalog, All Rights Reserved.