Current status of radiation oncology facilities in Nigeria

Type Journal Article - West African Journal of Radiology
Title Current status of radiation oncology facilities in Nigeria
Volume 20
Issue 1
Publication (Day/Month/Year) 2013
Page numbers 30-36
Background: An analysis of the current radiation oncology facilities status in Nigeria was conducted to establish a comprehensive baseline. Nigeria is the most populated African country with a population of at least 160 million people based on 2006 population census and average annual growth rate of 3.1%. It is also one of the least developed countries as regards radiation oncology resources with inadequate radiotherapy facilities. Many of the patients have little or no access to safe and modern radiation therapy. Purpose: To obtain a better understanding of the status of radiation oncological practices in Nigeria and to help sensitize the Nigerian government and its developmental partners on the way forward. Materials and Methods: The data were obtained mainly through surveys on the availability of major items of equipment and personnel which were conducted in September 2011. The study included only commissioned and functioning public radiotherapy facilities which are 5 in the country. Data were related to number and types of megavoltage machines, trained manpower (Radiation Oncologists, Medical Physicists, Oncology Nurses, Radiotherapy technologists, maintenance engineers and mould room Technicians), treatment planning systems TPS, Brachytherapy equipment, CT Simulator and Conventional simulators. Results: Of over 50 Tertiary Health Institutions (Teaching Hospitals and Federal Medical Centers) in the country, only 5 has Radiation Therapy facilities with 1 megavoltage machine each, 2 located in the north, 2 in the south and 1 in the Federal Capital Territory. The population served by each megavoltage machine ranges from 20 to 40 million per machine based on 2006 census. Most patients have little or no access to radiation oncology services. Some differences in equipment and personnel amongst centers were demonstrated and the shortage of radiation therapy resources was grossly evident. There are 18 Radiation Oncologists, 8 Medical physicists, 18 Radiotherapy technologists, 26 Oncology Nurses, 3 linear accelerators, 2 Co-60 machines, 2 orthovoltage therapy machines, 2 conventional simulators, 2 CT simulators, 2 centers with 3D TPS, 3 LDR and 1 HDR brachytherapy machines and 2 mould rooms. Some centers were found to treat patients without simulators or treatment planning system. Conclusion: A large deficiency exists for radiation oncological services in Nigeria. There are significant deficiencies in the availability of all components of radiation therapy in the analysed centers. Cognisance should be taken of the specific short falls in each centre to ensure that there is expansion of existing centers and creation of new centers especially in every geopolitical zone and major teaching hospitals in the country.

Related studies