Central Data Catalog

Citation Information

Type Thesis or Dissertation - Student thesis
Title Biogas development scenarios towards 2020 in Rwanda: The contribution to the energy sector and socio-economic and environmental impacts
Publication (Day/Month/Year) 2013
URL http://www.diva-portal.org/smash/get/diva2:677558/FULLTEXT01.pdf
Access to modern energy is essential to achieve sustainable development and poverty reduction. However, with about 321 kWh per capita, Rwanda is ranked among the countries that have a lower consumption of primary energy in the world. More than 86 percent of its total energy comes from the traditional biomass energy such as forests, agricultural residues and by-products from crops that lead to environmental degradation and ecological imbalance and negative impacts on human health as well. In addition, only 301,500 ha of forest are available for fuel wood and other uses such as construction for a total population of 10.5 million.

Therefore, decentralized energy sources in small-scale are presented to improve access to "appropriate" energy, which are beneficial to human health and environmental perspectives. The anaerobic digestion of biomass, popularly called “biogas”, is one of the appropriate energy technologies for cooking and/or lighting purposes (both in households and in institutions), which receives special attention in Rwanda since 2007. Three main objectives of this study were to assess the current biogas sector in Rwanda, to make projections of biogas development by 2020 and finally to analyze the socio-economic and environment benefits of biogas use to the Rwandan community.

The fieldwork conducted in two districts per province in addition to services that are in the capital, was based on the structured questionnaire, discussion with key people and see the state of biogas built. Therefore, in this study we used the "Appropriate Energy Model” to measure the degree of biogas dissemination, which educates for “geographical, institutional, entrepreneurial and socio-cultural “aspects.

The results showed that the temperature conditions in the country are generally conducive to the operation of a digester. However, the drought period between June and August, water scarcity in some regions and a low potential for digester feeding impede the propagation of biogas to a large number of people. The Rwandan entrepreneurs do not face institutional barriers to start-up biogas companies since the bureaucratic system in registration of a company is transparent. The installation costs of biogas plant are so high that they hamper the dissemination of biogas; however biogas technology does not contradict the socio-cultural conditions of Rwandans.

Related studies